IV Estimation

Dr. Alexander Spermann

Winter Term 2013-2014
Evaluation with Non-Experimental Approaches

Selection on Unobservables

Natural Experiment (exogenous variation in a variable)

DiD

Example:
Card/Krueger (1994)
Minimum Wage

IV

Instrument z correlated with endogenous x, but uncorrelated with u

Non-testable identifying assumption = exclusion restriction (intuition:
„excludes direct causal effect on outcome“ – van den Berg 2007)
Conditions for an Instrument

1) Cov (z,u) = 0

Implication:

Because

Exogeneity condition cannot be tested

Endogeneity would be Cov (z,u) ≠ 0

Diagram:

y → D
z

y → z

z → u → y

Instrument unobserv. outcome variables
Conditions for an Instrument

2) $\text{Cov}(z,x) \neq 0$

relevance condition can be tested

implication

x

z

correlation

negative

positive
IV Estimator

\[\hat{\beta}_{IV} = \frac{Cov(z, y)}{Cov(z, x)} \]

if \(z = x \) i.e. \(x \) is exogenous

\[\hat{\beta}_{IV} = \hat{\beta}_{OLS} = \frac{Cov(x, y)}{Cov(x, x)} = \frac{Cov(x, y)}{Var(x)} \]
Example: Return to Education (Mincer equation)

\[
\log(\text{wage}) = \beta_0 + \beta_1 \text{educ} + \beta_2 \text{abil} + u
\]

if no proxy available

\[
= \beta_0 + \beta_1 \text{educ} + u
\]

educ is obviously endogenous and hides abil in the error term u

\[\hat{\beta}_{OLS} = 11\%\]

OLS would be biased and inconsistent because OVB i.e. Cov(x,u) \neq 0

endogeneity problem
Plausible arguments for the exogeneity condition to hold

1) Instrument IQ?
 - Correlated with y
 - Correlated with u (ability)
 good proxy for ability, but no instrument for educ

2) Instrument mother’s education?
 - Correlated with x
 - But also correlated with u via child’s ability
 no instrument

3) Instrument number of siblings?
 - Negative correlation with x
 (some evidence on that)
 - If no correlation with ability
 instrument
 \[\hat{\beta}_{IV} = 12.2\% > \hat{\beta}_{OLS} = 11\% \]
 OLS underestimates true value
Binary IV

Angrist/Krueger (1999)
Census data for men 1980, born in the 30s

Instrument: quarter of birth of education

<table>
<thead>
<tr>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
</tr>
</thead>
</table>

School starts

Born in Q1-older than 6 years

Younger than 6 years
Binary IV

Institutional detail in the U.S.:

- Start school at an older age + leave school with 16 years (birthday) (compulsory schooling laws) with a legal leaving age
- End with less education than others at the legal leaving age
- Born in Q1 means less schooling

Correlation

1. No correlation with ability

2. Correlation with educ

\[\beta_{OLS} = 8\% \]
\[\beta_{IV} = 7.15\% \]

\(\hat{\beta}_{OLS} \) overestimates (due to positive correlation between education and quarter of birth, i.e. the higher Q the higher educ).

\(\hat{\beta}_{IV} \) does not

Instrument is correlated with other unobserved factors
Instrument: College Proximity (Binary Variable)

Card 1995

\[\log(\text{wage}) = \beta_0 + \beta_1 \text{educ} + \beta_2 \text{exp} + ... + u \]

Instrument
Proximity to college
1 if near college
0 if far from college
Instrument: College Proximity (Binary Variable)

Correlation
1. No correlation with u
2. Correlation with x (educ)
 check by regression educ on nearc4 (is it negative?)

\[\hat{\beta}_{OLS} = 7.5\% \]
\[\hat{\beta}_{IV} = 13.2\% \]

OLS underestimates true value due to negative correlation
(the closer the distance the higher education)

But large standard errors (18 x OLS s.e.)

95% confidence interval
0.024….0.235

This is the price to pay for a consistent estimator
Instrument binary variable: veteran

Angrist 1990, AER

$log(earn) = \beta_0 + \beta_1 veteran + u$

binary variable

Correlated (self selection) → OLS biased and inconsistent

RSN = random sequence numbers randomly assigned to birthdays

Vietnam draft lottery (1970)

Natural experiment

Lottery numbers to young men (= instrument for veteran)

randomly assigned

drafted not drafted

lottery numbers 1 100
Instrument Binary Variable: Veteran

Correlation

1. Uncorrelated with u due to random assignment
2. Correlated with x (veteran) because low numbers
 → service in Vietnam

Result

- Veterans earn less ten years later
- Theory: penalty for lack of labor market experience
Dummy Variable Instrument (Caliendo)

Binary instrument z^* with \{0,1\}
Source of exogenous variation to approximate randomized trials

\[
\hat{\beta}_{IV} = \frac{E(y \mid x, z^* = 1) - E(y \mid x, z^* = 0)}{P(D = 1 \mid x, z^* = 1) - P(D = 1 \mid x, z^* = 0)}
\]

Wald estimator
Problems of the Wald Estimator

1. Weak instrument
 things could be worse
 → inefficency
 → inconsistency

2. Heterogenous treatment framework
 → IV not applicable
 → LATE is parameter of interest
Heterogeneous Effects

\[z \in \{0, 1\} \]

\[\begin{align*}
\text{population} \\
\text{subgroups} \\
\text{never takers} \\
\text{always takers} \\
defier \\
\text{complier}
\end{align*} \]

D=0 or D=1

R=0 or R=1

\[\begin{align*}
\text{D=0} & \quad \text{D=1} \\
\text{D=0} & \quad \text{D=1} \\
\text{D=0} & \quad \text{D=1} \\
\text{D=0} & \quad \text{D=1}
\end{align*} \]

change behavior due to switch in instrument

z=0

z=1

change behavior in line with the instrument before D=0
then z=0
after D=1

in perverse way

monotonicity assumption
no coexistence of defiers and compliers

rule
change

16.01.2014
LATE is defined for compliers

\[\hat{\beta}_{IV,LATE} = \frac{E(J_i \mid X_i, \tilde{z}_i = 1) - E(J_i \mid X_i, \tilde{z}_i = 0)}{P(D_i = 1 \mid X_i, \tilde{z}_i = 1) - P(D_i = 1 \mid X_i, \tilde{z}_i = 0)} \]

more details: Angrist/Pischke 2009
Imbens/ Wooldrige 2009