Exercise Course “Portfolio Analysis”

Problem Set 1

Problem 1

a) A person with initial wealth \(w \) has an expected utility function of the form \(U(W) = \log W \). She is offered the opportunity to bet on the flip of a coin that has a probability \(p \) of coming up heads. If she bets \(x \), she will have \(w + x \) if head comes up and \(w - x \) if tails comes up. Solve for the optimal \(x (x \geq 0) \) as a function of \(p \). What if \(p = 0.5 \)?

Does the investor of this example exhibit decreasing absolute risk aversion?

b) A person has an expected utility function of the form \(U(W) = \sqrt{W} \). He initially has wealth of 4. He also has a lottery ticket that will be worth 12 with probability 0.5 and will be worth 0 (nothing) with probability 0.5. What is the lowest price, \(p \), at which he would sell the ticket?

Problem 2

a) A person with initial wealth \(W_0 \) and expected utility function \(U(W) = \log W \) has two investment alternatives: A risk-free asset, which pays no interest (e.g., money), and a risky asset, the return \((R) \) on which will be equal to \(r_1 < 0 \) with probability \(p \) and equal to \(r_2 > 0 \) with probability \(1 - p \). Denote the fraction of initial wealth to be invested in the risky asset by \(x \), and the return on the portfolio formed from the risk-free and the risky asset by \(r_p \). Find the \(x \) which maximizes the expected utility of wealth in period 1, \(W_1 = (1 + r_p)W_0 \). Denote this solution by \(x^* \). What is the condition for \(x^* > 0 \)?

b) Now consider a problem similar to that in a), but the expected utility function of the investor is \(U(W) = -\exp(-cW) \), \(c > 0 \), and the return of the risky asset is normally distributed with mean \(\mu \) and variance \(\sigma^2 \).
Problem 3: Properties and interpretation of correlation

a) (i) Prove the Cauchy–Schwarz Inequality: For two random variables V and W with finite second moments, \(\{E(VW)\}^2 \leq E(V^2)E(W^2) \). (Hint: Consider the function \(g(\lambda) = E((V - \lambda W)^2) \geq 0 \) and choose \(\lambda \) appropriately.)

(ii) Conclude that for random variables X and Y, $-1 \leq \rho_{XY} \leq 1$, where ρ_{XY} is the coefficient of correlation between X and Y.

b) Correlation is a measure for the strength of linear association between two random variables. Consider random variables X and Y with means μ_X and μ_Y, variances σ_X^2 and σ_Y^2, covariance σ_{XY}, and correlation ρ_{XY}. Define the random variable $\hat{Y} = a + bX$ to represent the predictions of Y based on a linear function of X.

(i) Show that, if a and b are chosen to minimize the expected squared distance, \[
E[d^2(Y, \hat{Y})] = E[(Y - \hat{Y})^2] = E[(Y - (a + bX))^2],
\]
the result is $a = \mu_Y - (\sigma_{XY}/\sigma_X^2)\mu_X$, and $b = \sigma_{XY}/\sigma_X^2$.

(ii) Define $V = Y - \hat{Y}$ to represent the deviations between outcomes of Y and outcomes of the best linear prediction of Y; i.e., \hat{Y} as determined by the minimization of (1). Show that \[
\sigma_Y^2 = \sigma_{\hat{Y}}^2 + \sigma_V^2,
\]
where \[
\sigma_{\hat{Y}}^2 = E[(\hat{Y} - E(\hat{Y}))^2] = \rho_{XY}^2 \sigma_Y^2,
\]
\[
\sigma_V^2 = E(V^2) = (1 - \rho_{XY}^2)\sigma_Y^2.
\]
Interpret this result.
c) The property of being positively correlated is not transitive. That is, if \(X, Y \) and \(Z \) are random variables and \(X \) and \(Y \) are positively correlated and \(Y \) and \(Z \) are likewise positively correlated, it is not necessarily the case that \(X \) and \(Z \) are also positively correlated. To illustrate, show that:

Let \(U, V \) and \(W \) be any nontrivial independent random variables with zero mean, and define \(X, Y \) and \(Z \) by \(X = U + V, Y = W + V, \) and \(Z = W - U \). Then \(\rho_{XY} \) and \(\rho_{YZ} \) are positive and \(\rho_{XZ} \) is negative, where \(\rho \) denotes correlation.\(^1\)

\(^1\)For further analysis, see Langford, Schwertman and Owens (2001): Is the Property of Being Positively Correlated Transitive? The American Statistician 55, 322-325.