Search Theory

• Market wage (offer wage) is not given - as it is assumed in labor supply theory

• Instead offer wage is the outcome of an economic process/activity. Here, we analyze search process under labor market frictions (asymmetric information between unemployed and employers)

• There is no single market wage depending upon worker characteristics z_i but instead wages may differ ex post between workers with the same characteristics z_i because of the randomness ("luck") in the search process.

• Search theory models transitions between unemployment and employment (flow approach of the labor market)

→ see chapter by Mortensen/Pissarides in Handbook of Labor Economics

Search model:

Assumptions:

• Incomplete information

• Search costs
Unemployed receives a take-it-or-leave-it wage offer by a randomly contacted employer and has to decide whether to accept the offer (and take the job) or whether to continue search for a better job offer. This is an optimal stopping problem (see model for optimal schooling level).

Reservation wage property

Reservation wage: \(w^R \)

Decision Rule:

<table>
<thead>
<tr>
<th>Wage offer</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w \geq w^R)</td>
<td>accept job</td>
</tr>
<tr>
<td>(w < w^R)</td>
<td>continue search</td>
</tr>
</tbody>
</table>

Wage offer distribution: Each period the unemployed receives a wage offer when unemployed continues search while incurring fixed per period search costs \(c \). This random wage offer is an i.i.d. draw from the wage offer distribution with pdf \(f(z, w) \).

\(f(z, w) \): density of offer wage \(w \) for unemployed with characteristics \(z \)

Job acceptance probability (≡ exit probability from unemployment to employment, job finding rate):

\[
p(z, w^R) = \int_{w^R}^{\infty} f(z, w) \, dw
\]

- **Expected duration of unemployment:** \(\frac{1}{p(z, w^R)} \) in stable (stationary) environment

- **Decision rule of unemployed:** Choose reservation wage \(w^R \) such that intertemporal utility is maximized. This yields as optimality condition (determining \(w^R \)):

\[
\text{Marginal cost of continuing search} = \text{Return to continuing search}
\]
Graphical Analysis:

Optimality condition to determine w^R ex ante:

- Expected wage when accepting wage offer

$$E[w|w \geq w^R] = \int_{w^R}^{\infty} w \frac{f(z,w)}{p(z,w^R)} dw$$

→ this is the conditional wage for wages above w^R when the pdf $f(z,w)$ holds

- Costs of continuing search per period: c
• Optimality condition can be rewritten as

Marginal return to increase of $w^R = \text{Marginal costs due to increase of } w^R$

\[
\begin{align*}
\Downarrow & \quad \Downarrow \\
\text{Expected wage increases} & \quad \text{Acceptance probability falls} \\
\frac{\partial E(w|w \geq w^R)}{\partial w} & \geq 0 \\
\text{"better match"} & \quad \frac{\partial p(z,w^R)}{\partial w^R} \leq 0 \\
& \quad \text{which prolongs job search and increases search cost by } c \text{ per additional time needed to find job}
\end{align*}
\]

Results:

1) w^R depends upon z (i.e. non labor income, human capital), unemployment benefits b, search cost c

\[
\frac{\partial w^R}{\partial c} < 0, \quad \frac{\partial w^R}{\partial b} > 0, \quad \frac{\partial w^R}{\partial \text{Education}} > 0
\]

2) The decision rule $w \geq w^R$ leads to ex post wage differences among observationally equivalent workers (with fixed individual characteristics z) which can not be explained deterministically.

3) Model explains search unemployment: If $w < w^R$ then unemployed remains unemployed in period t. Share of $[1 - p(z, w^R)]$ remain in search unemployment.

4) Variables which reduce the individual (opportunity) costs of unemployment increase the reservation wage w^R, i.e. prolong unemployment and improve the match.

→ Unemployment benefits reduce search costs
→ Sanctioning/Monitoring of search effort increase search costs.