IV Estimation

SS 2011

Alexander Spermann
Evaluation With Non-Experimental Approaches

Selection on Unobservables

↓

Natural Experiment

(exogenous variation in a variable)

DiD

Example:
Card/Krueger (1994)
Minimum wage

IV

Instrument z correlated with endogenous x, but uncorrelated with u

Non-testable identifying assumption

=exclusion restriction

„excludes direct causal effect on outcome“
(van den Berg 2007)
Conditions for an Instrument

1) \(\text{Cov}(z,u) = 0 \)

Exogeneity condition cannot be tested

Implication

\(y \) \(\quad \) \(D \)
\(z \)

(Instrument)

Because

\(z \) \(\quad \) \(u \) \(y \)

Instrument unobserv. outcome
variables
2) \(\text{Cov}(z,x) \neq 0 \)

Relevance condition can be tested

Implication

\[z \rightarrow x \]

Negative

Correlation

Positive
IV Estimator

\[\hat{\beta}_{IV} = \frac{Cov(z, y)}{Cov(z, x)} \]

If \(z = x \) i.e. \(x \) is exogenous

\[\Rightarrow \hat{\beta}_{IV} = \hat{\beta}_{OLS} = \frac{Cov(x, y)}{Cov(x, x)} = \frac{Cov(x, y)}{Var(x)} \]
Example: Return to Education (Mincer equation)

\[\log(\text{wage}) = \beta_0 + \beta_1 \text{educ} + \beta_2 \text{abil} + u \]

if no proxy available

\[= \beta_0 + \beta_1 \text{educ} + u \]

\[\iff \text{OLS would be biased and inconsistent because OVB i.e. Cov(x,u) \neq 0} \]

\[\iff \text{endogeneity problem} \]

\[\hat{\beta}_{\text{OLS}} = 11\% \]
Instrumental Variables for Education

1) **Instrument IQ?**
 - Correlated with y
 - Correlated with u
 \[\Rightarrow\] good proxy, but no instrument for ability

2) **Instrument mother’s education?**
 - Correlated with x
 - But also correlated with u via child’s ability
 \[\Rightarrow\] no instrument

3) **Instrument number of siblings?**
 - Negative correlated with x
 (some evidence on that)
 - If no correlation with ability
 \[\Rightarrow\] instrument

\[\hat{\beta}_{IV} = 12.2\% > \hat{\beta}_{OLS} = 11\%\]

OLS underestimates true value
Binary IV

Angrist/Krueger (1999)

Instrument: quarter of birth for education

<table>
<thead>
<tr>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
</tr>
</thead>
</table>

School starts

Born in Q1 - older than 6 years

→ Later in school than born in Q2 – Q4

Census data for men 1980, born in the 30s

School start – age policies ?? Bavaria 2009

SS 2011 IV Estimation
Binary IV

- Start school at an older age + leave school with 16 years (birthday) (compulsory schooling laws)
- End with less education than others at university
- Born in Q1, earn less

Correlation
1. No correlation with ability
 - weak instrument
 - instrument is correlated with other unobserved factors

2. Correlation with educ
 - large data set

\[
\hat{\beta}_{OLS} = 8\%
\]
\[
\hat{\beta}_{IV} = 7.15\%
\]
- OLS overestimates
- Earn less
Instrument: College Proximity (Binary Variable)

Card 1995

\[
\log(\text{wage}) = \beta_0 + \beta_1 \text{educ} + \beta_2 \text{exper} + \ldots + u
\]

\[= \]

Instrument

Proximity to college

1 if near college

0 if far from college
Instrument: College Proximity (Binary Variable)

Correlation

1. No correlation with u
2. Correlation with x (educ)

??? by regression educ on nearc4

\[\hat{\beta}_{OLS} = 7.5\% \]
\[\hat{\beta}_{IV} = 13.2\% \]

But large standard errors (18 x OLS s.e.)

\[\rightarrow 95\% \text{ confidence interval} \]

\[0.024 \ldots 0.235 \]

\[\rightarrow \text{This is the price to pay for a consistent estimator} \]
Instrument binary variable: veteran

Angrist 1990, AER

\[
\log(earn) = \beta_0 + \beta_1 \text{veteran} + u
\]

- **RN= random sequence numbers**
- randomly assigned to birthdays

Vietnam draft lottery (1970)

- Natural experiment
 - Lottery numbers to young men (=instrument for veteran)
 - \(\rightarrow\) randomly assigned

\[\text{drafted} \quad \text{not drafted}\]

\[\text{lottery numbers}\]

\[\begin{align*}
1 & \quad 100
\end{align*}\]

\(\Rightarrow\) OLS biased and inconsistent
Correlation

1. Uncorrelated with u due to random assignment
2. Correlated with x (veteran) because low numbers → service in Vietnam

Result

• Veterans earn less ten years later
• Theory: penalty for lack of labor market experience
Dummy Variable Instrument (Caliendo)

Binary instrument \(z^*\) with \{0,1\}
Source of exogenous variation to approximate randomised trials

\[
\hat{\beta}_{IV} = \frac{E(y \mid x, z^* = 1) - E(y \mid x, z^* = 0)}{Y(D = 1 \mid x, z^* = 1) - Y(D = 1 \mid x, z^* = 0)}
\]

Wald estimator
Problems of the Wald Estimator

1. Weak instrument
 things could be worse
 → inefficiency
 → inconsistency

2. Heterogenous treatment framework
 → IV not applicable
 → LATE is parameter of interest
Heterogenous Effects

\[z \in \{0, 1\} \]

\[D = 1 \quad \text{or} \]
\[D = 0 \]

- **never takers**
 - \(D=0 \)
 - \(D=1 \) \(\Rightarrow \) \(?=0 \)

- **always takers**
 - \(D=0 \)
 - \(D=1 \) \(\Rightarrow \) \(?=1 \)

- **defier**
 - change behaviour due to switch in instrument
 - \(z=0 \)
 - \(z=1 \)
 - \(D=0 \)
 - \(D=1 \) \(\Rightarrow \) \(?=1 \)

- **complier**
 - change behaviour in line with the instrument
 - before \(D=0 \)
 - then \(z=0 \)
 - \(z=1 \) \(\text{rule change} \)
 - after \(D=1 \)

- **monotonicity assumption**
 - no coexistence of defiers and compliers
Application JTPA

Control group substitution bias
Treatment group dropout bias

{ IV could control for that }
LATE is defined for compliers

\[\hat{\beta}_{IV,LATE} = \frac{E(J_i \mid X_i, \tilde{z}_i = 1) - E(J_i \mid X_i, \tilde{z}_i = 0)}{P(D_i = 1 \mid X_i, \tilde{z}_i = 1) - P(D_i = 1 \mid X_i, \tilde{z}_i = 0)} \]

more details: Angrist/Pischke 2009

Imbens/Wooldridge 2009