Applied Econometrics

Multiple Regression Analysis

Interval Estimation and Hypothesis Testing I

Text: Wooldridge, Chapter 4 and Appendix C

June 30, 2011
Sampling Distribution of the OLS Estimator under Normality

- Consider the OLS estimator $\hat{\beta}$ of β in the model

$$y = X\beta + u,$$

i.e.,

$$\hat{\beta} = (X'X)^{-1}X'y.$$ \hspace{1cm} (2)

- We know that

$$E(\hat{\beta}) = \beta$$ \hspace{1cm} (3)

$$\text{Cov}(\hat{\beta}) = \sigma^2(X'X)^{-1}.$$ \hspace{1cm} (4)

- In order to conduct statistical inference such as hypothesis testing, we need to be able to make statements about the full sampling distribution of $\hat{\beta}$.
The Normality Assumption

- To derive the distributions of relevant test statistics, we add to our earlier Gauß–Markov Assumptions the assumption of normality:

- **Normality assumption**: The error u is independent of X and normally distributed with mean zero and variance σ^2, i.e.,

$$u_i \sim N(0, \sigma^2). \quad (5)$$

- Given our earlier result that $\text{Cov}(u) = \sigma^2 I$, the normality assumption can also be written as

$$u \sim \text{MVN}(0, \sigma^2 I), \quad (6)$$

indicating a multivariate normal (MVN) distribution with mean 0 and covariance matrix $\sigma^2 I$.

- With the assumption of normality added, the linear regression model under the Gauß–Markov Assumptions is also referred to as the **classical linear model (CLM)**.
Implications of the Normality Assumption

• Recall that

\[
\hat{\beta} = (X'X)^{-1}X'y = (X'X)^{-1}X'(X\beta + u)
= \beta + (X'X)^{-1}X'u,
\]

so that \(\hat{\beta}\) is a linear function of the normally distributed \(u\).

• In general, if \(x \sim \text{MVN}(\mu, \Sigma)\), then

\[
Ax + b \sim \text{MVN}(A\mu + b, A\Sigma A').
\]

(7)

• Hence \(\hat{\beta}\) is likewise normal, i.e.,

\[
\hat{\beta}|X \sim \text{MVN}(\beta, \sigma^2(X'X)^{-1}),
\]

(8)

i.e., the OLS estimator \(\hat{\beta}\) is normally distributed with mean vector \(\beta\) and covariance matrix \(\sigma^2(X'X)^{-1}\).
Implications of the Normality Assumption

• Implications of (8), among others, are as follows:

1. Each element of \(\hat{\beta} \), say \(\hat{\beta}_j \), has a univariate normal distribution with mean \(\beta_j \) and a variance given by the corresponding diagonal element of the covariance matrix \(\sigma^2(X'X)^{-1} \), i.e.,

\[
\hat{\beta}_j \sim \mathcal{N}(\beta_j, \sigma^2_{\hat{\beta}_j}),
\]

where \(\sigma^2_{\hat{\beta}_j} \) denotes the sampling variance of \(\hat{\beta}_j \), and by standardization we get the standard normal with mean zero and unit variance,

\[
\frac{\hat{\beta}_j - \beta_j}{\sigma_{\hat{\beta}_j}} \sim \mathcal{N}(0, 1),
\]

where \(\sigma_{\hat{\beta}_j} = \sqrt{\sigma^2_{\hat{\beta}_j}} \) is the standard error of \(\hat{\beta}_j \).
• For example, in the simple linear regression model, $y = \beta_0 + \beta_1 x_1 + u$,

$$
\sigma^2 (X'X)^{-1} = \frac{\sigma^2}{ns^2_{x_1}} \begin{bmatrix}
\bar{x}_1^2 & -\bar{x}_1 \\
-\bar{x}_1 & 1
\end{bmatrix},
$$

so

$$
\hat{\beta}_0 \sim N \left(\beta_0, \frac{\sigma^2 \bar{x}_1^2}{ns^2_{x_1}} \right),
$$

and

$$
\hat{\beta}_1 \sim N \left(\beta_1, \frac{\sigma^2}{ns^2_{x_1}} \right).
$$
• A further implication of (8) is:

(2) All linear combinations of the elements in $\hat{\beta}$ are likewise normally distributed.

• That is, for matrix \mathbf{R}, it follows from (7) that

$$
\mathbf{R}\hat{\beta} \sim \text{MVN} \left(\mathbf{R}\beta, \sigma^2 \mathbf{R} \mathbf{(X'X)}^{-1} \mathbf{R}' \right). \tag{11}
$$
Interval Estimation and Confidence Intervals

• The OLS estimator $\hat{\beta}_j$ is a point estimator of β_j.

• With probability one, $\hat{\beta}_j \neq \beta_j$.

• For practical applications, we are also interested in knowing a likely range of values for the unknown parameter, given the data.

• That is, we want to construct an interval estimator for β_j (called a confidence interval, CI), which a priori has a high probability of containing the unknown parameter.

• Such an interval also reflects the precision of our point estimate.

• We construct the confidence interval in such a way that it contains the true parameter value β_j with some pre–specified probability (coverage probability or confidence coefficient) $1 - \alpha$, where α is the (typically small) probability of error.

• E.g., if $\alpha = 0.05$, then the CI will contain β_j with probability 0.95.
• Formal definition: $\text{CI}_{1-\alpha}$ is a *random interval* such that, conditional on X,

$$\Pr(\beta_j \in \text{CI}_{1-\alpha}) = 1 - \alpha.$$ \hfill (12)

• Note that the random element in (12) is $\text{CI}_{1-\alpha}$, β_j is a fixed quantity (the true population parameter).

• We consider a symmetric confidence interval around the estimator $\hat{\beta}_j$:

$$\text{Cl}_{1-\alpha} = [\hat{\beta}_j - c_{1-\alpha}, \hat{\beta}_j + c_{1-\alpha}].$$ \hfill (13)

• We need to determine $c_{1-\alpha}$ such that

$$\Pr(\beta_j \in \text{CI}_{1-\alpha}) = 1 - \alpha.$$ \hfill (14)
• We know that

$$\widehat{\beta}_j \sim N(\beta_j, \sigma^2_{\widehat{\beta}_j}), \quad \sigma^2_{\widehat{\beta}_j} = \sigma^2(X'X)^{-1}_{jj}, \quad (15)$$

where $$(X'X)^{-1}_{jj}$$ is the corresponding diagonal element of $$(X'X)^{-1}$$, and

$$\frac{\widehat{\beta}_j - \beta_j}{\sqrt{\sigma^2_{\widehat{\beta}_j}}} \sim N(0, 1). \quad (16)$$

• Let $$Z \sim N(0, 1)$$ (i.e., $$Z$$ has a standard normal distributon).

• The $$\gamma$$–quantile of the standard normal distribution $$z_\gamma$$ is defined such that

$$\Pr(Z \leq z_\gamma) = \int_{-\infty}^{z_\gamma} \frac{e^{-z^2/2}dz}{\sqrt{2\pi}} = \gamma. \quad (17)$$

• By symmetry around zero,

$$z_{1-\gamma} = -z_\gamma. \quad (18)$$
• For example, if $\gamma = 0.975$, then $z_{\gamma} = 1.96$, and so $z_{0.025} = -1.96$.

<table>
<thead>
<tr>
<th>γ</th>
<th>0.9</th>
<th>0.95</th>
<th>0.975</th>
<th>0.99</th>
<th>0.995</th>
</tr>
</thead>
<tbody>
<tr>
<td>z_γ</td>
<td>1.282</td>
<td>1.645</td>
<td>1.960</td>
<td>2.326</td>
<td>2.576</td>
</tr>
</tbody>
</table>

• Now suppose for the moment that σ^2 and hence $\sigma^2_{\hat{\beta}_j}$ is known.

• Take $\gamma = 1 - \alpha/2$, and consider the interval

$$CI = \left[\hat{\beta}_j - z_{1-\alpha/2} \times \sigma_{\hat{\beta}_j}, \hat{\beta}_j + z_{1-\alpha/2} \times \sigma_{\hat{\beta}_j}\right].$$ (19)
Then

\[
\Pr(\beta_j \in \text{Cl}) = \Pr(\hat{\beta}_j - z_{1-\alpha/2} \times \sigma_{\hat{\beta}_j} \leq \beta_j \leq \hat{\beta}_j + z_{1-\alpha/2} \times \sigma_{\hat{\beta}_j})
\]

\[
= \Pr(-z_{1-\alpha/2} \times \sigma_{\hat{\beta}_j} \leq \beta_j - \hat{\beta}_j \leq z_{1-\alpha/2} \times \sigma_{\hat{\beta}_j}) \tag{20}
\]

\[
= \Pr(-z_{1-\alpha/2} \times \sigma_{\hat{\beta}_j} \leq \hat{\beta}_j - \beta_j \leq z_{1-\alpha/2} \times \sigma_{\hat{\beta}_j}) \tag{21}
\]

\[
= \Pr\left(-z_{1-\alpha/2} \leq \frac{\hat{\beta}_j - \beta_j}{\sigma_{\hat{\beta}_j}} \leq z_{1-\alpha/2}\right) \tag{22}
\]

\[
= \Pr\left(\frac{\hat{\beta}_j - \beta_j}{\sigma_{\hat{\beta}_j}} \leq z_{1-\alpha/2}\right) - \Pr\left(\frac{\hat{\beta}_j - \beta_j}{\sigma_{\hat{\beta}_j}} \leq -z_{1-\alpha/2}\right)
\]

\[
= \Pr\left(\frac{\hat{\beta}_j - \beta_j}{\sigma_{\hat{\beta}_j}} \leq z_{1-\alpha/2}\right) - \Pr\left(\frac{\hat{\beta}_j - \beta_j}{\sigma_{\hat{\beta}_j}} \leq z_{\alpha/2}\right) \tag{23}
\]

\[
= 1 - \frac{\alpha}{2} - \frac{\alpha}{2} = 1 - \alpha, \tag{24}
\]

where in (23) \(-z_{1-\alpha/2} = Z_{\alpha/2}\) was used.
• Since σ^2 is not known, it has to be estimated from the data via

$$\hat{\sigma}^2 = \frac{1}{n-k-1} \sum_{i=1}^{n} \hat{u}_i^2 = \frac{\hat{u}'\hat{u}}{n-k-1}. \quad (25)$$

• However, in this case, quantity

$$t_{\hat{\beta}_j} = \frac{\hat{\beta}_j - \beta_j}{\hat{\sigma}_{\hat{\beta}_j}}, \quad \hat{\sigma}^2_{\hat{\beta}_j} = \hat{\sigma}^2(X'X)^{-1}_{jj}, \quad (26)$$

is no longer normally distributed.

• It can be shown that (26) has a Student’s t distribution with $n - k - 1$ degrees of freedom, i.e.,

$$t_{\hat{\beta}_j} = \frac{\hat{\beta}_j - \beta_j}{\hat{\sigma}_{\hat{\beta}_j}} \sim t(n - k - 1). \quad (27)$$
t densities for various degrees of freedom

- $\nu = 1$
- $\nu = 5$
- $\nu = \infty$

The diagram shows the t densities for different degrees of freedom, with ν values of 1, 5, and ∞. The distributions are visualized with corresponding curves for each degree of freedom.
• The t distribution has more probability mass in the tails than the normal.

• Hence, the quantiles are larger (in magnitude) than the corresponding quantiles of the normal distribution, and hence confidence intervals are wider.

• This reflects the larger uncertainty due to the additional sampling error embodied in the estimated error term variance.

• For $\nu \to \infty$, the t distribution approaches the normal distribution, where ν denotes degrees of freedom.

• Often normal quantiles are used for $\nu > 30$.

• Several quantiles of the t distribution are provided in Table 2.
Table 2: Quantiles of the \(t \) distribution (\(\nu \) denotes degrees of freedom)

<table>
<thead>
<tr>
<th>(\nu)</th>
<th>0.9</th>
<th>0.95</th>
<th>0.975</th>
<th>0.99</th>
<th>0.995</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.078</td>
<td>6.314</td>
<td>12.706</td>
<td>31.821</td>
<td>63.657</td>
</tr>
<tr>
<td>3</td>
<td>1.638</td>
<td>2.353</td>
<td>3.182</td>
<td>4.541</td>
<td>5.841</td>
</tr>
<tr>
<td>5</td>
<td>1.476</td>
<td>2.015</td>
<td>2.571</td>
<td>3.365</td>
<td>4.032</td>
</tr>
<tr>
<td>10</td>
<td>1.372</td>
<td>1.812</td>
<td>2.228</td>
<td>2.764</td>
<td>3.169</td>
</tr>
<tr>
<td>15</td>
<td>1.341</td>
<td>1.753</td>
<td>2.131</td>
<td>2.602</td>
<td>2.947</td>
</tr>
<tr>
<td>16</td>
<td>1.337</td>
<td>1.746</td>
<td>2.120</td>
<td>2.583</td>
<td>2.921</td>
</tr>
<tr>
<td>17</td>
<td>1.333</td>
<td>1.740</td>
<td>2.110</td>
<td>2.567</td>
<td>2.898</td>
</tr>
<tr>
<td>18</td>
<td>1.330</td>
<td>1.734</td>
<td>2.101</td>
<td>2.552</td>
<td>2.878</td>
</tr>
<tr>
<td>19</td>
<td>1.328</td>
<td>1.729</td>
<td>2.093</td>
<td>2.539</td>
<td>2.861</td>
</tr>
<tr>
<td>20</td>
<td>1.325</td>
<td>1.725</td>
<td>2.086</td>
<td>2.528</td>
<td>2.845</td>
</tr>
<tr>
<td>25</td>
<td>1.316</td>
<td>1.708</td>
<td>2.060</td>
<td>2.485</td>
<td>2.787</td>
</tr>
<tr>
<td>30</td>
<td>1.310</td>
<td>1.697</td>
<td>2.042</td>
<td>2.457</td>
<td>2.750</td>
</tr>
<tr>
<td>50</td>
<td>1.299</td>
<td>1.676</td>
<td>2.009</td>
<td>2.403</td>
<td>2.678</td>
</tr>
<tr>
<td>100</td>
<td>1.290</td>
<td>1.660</td>
<td>1.984</td>
<td>2.364</td>
<td>2.626</td>
</tr>
<tr>
<td>(\infty)</td>
<td>1.282</td>
<td>1.645</td>
<td>1.960</td>
<td>2.326</td>
<td>2.576</td>
</tr>
</tbody>
</table>

\(\nu = \infty \) corresponds to the normal distribution.
• Let t_{γ}^ν be the γ–quantile of the t distribution with ν degrees of freedom.

• That is, for $T \sim t(\nu)$,

$$\Pr(T \leq t_{\gamma}^\nu) = \gamma.$$ \hspace{1cm} (28)

• Just as the standard normal distribution, the t distribution is symmetric around zero, so

$$t_{1-\gamma}^\nu = -t_{\gamma}^\nu.$$ \hspace{1cm} (29)

• Hence, a feasible confidence interval (i.e., with σ^2 unknown) with confidence level $1 - \alpha$ is

$$\text{CI}_{1-\alpha} = [\hat{\beta}_j - t_{1-\alpha/2}^{n-k-1} \times \hat{\sigma}_{\hat{\beta}_j}, \hat{\beta}_j + t_{1-\alpha/2}^{n-k-1} \times \hat{\sigma}_{\hat{\beta}_j}]$$ \hspace{1cm} (30)

• A rule of thumb for reasonably large sample sizes (so $t \approx \text{normal}$) is to calculate a 95% confidence interval for β_j as $\hat{\beta}_j \pm 2 \times \hat{\sigma}_{\hat{\beta}_j}$.
Interpretation of Confidence Intervals

- The confidence interval is a function of the data and thus is random.

- Before the sample of data is generated, the probability is $1 - \alpha$ that the data will be such that $\text{CI}_{1-\alpha}$ contains the true value β_j.

- Once we have observed the data, we calculate the realization of the interval for our particular sample of data.

- This realization of $\text{CI}_{1-\alpha}$ is no longer random, so it makes no sense to talk about the probability that the realized interval contains β_j.

- The realized interval either contains the true value β_j or not; no probability is involved.
Hypothesis Testing

- A hypothesis is a statement about one or more unknown population parameters.

- Based on the data, we want to decide whether the statement is true or false.

- Typically, we have two competing hypotheses:
 - **Null hypothesis** (H_0): The null hypothesis is presumed to be true until the data strongly suggest otherwise.
 - **Alternative hypothesis** (H_1): A hypothesis against which the null is tested. It is presumed to be true if the data reject the null.

- Usually the case of interest is stated as H_1, which can be accepted if the data provide strong evidence against H_0.

- We cannot “accept the null hypothesis”; either the evidence in the data rejects H_0 or “fails to reject $H_0” (see below for explanation).
Consider

\[wage = \beta_0 + \beta_1 \times female + \beta_2 \times education + \cdots + u. \quad (31) \]

For example, we may test \(H_0 : \beta_1 = 0 \) (no wage discrimination) against \(H_1 : \beta_1 < 0 \) (wage discrimination).

In hypothesis testing, there are two types of errors one can make:

- **Type I error**: Rejecting \(H_0 \) when \(H_0 \) is true
- The probability of a Type I error is denoted by \(\alpha \) and called the **significance level** of the test, i.e.,

\[\alpha = \Pr(\text{Reject } H_0 | H_0 \text{ is true}). \quad (32) \]

- **Type II error**: Not rejecting \(H_0 \) when \(H_1 \) is true.

In hypothesis testing, we initially specify a significance level \(\alpha \) of a test.

This is typically chosen as a small number such as 0.01, 0.05, or 0.1, so that a rejection of \(H_0 \) can actually be viewed as strong evidence against the null (and in favor of \(H_1 \)).
• We have to determine a test statistic (or simply a statistic), and a critical region (or rejection region).

• The test statistic is a function of the data, i.e., a random quantity.

• Our particular sample of data gives rise to a particular realization of the test statistic.

• We then check whether the realization of the test statistic falls into the critical region, in which case we reject the null hypothesis.

• In summary, we have the following steps:

1. Specify H_0 and H_1.
2. Choose the significance level α.
3. Define the critical region. This requires knowledge of the distribution of the test statistic under the null hypothesis.
4. Calculate the test statistic for the observed sample of data and reject H_0 if it falls into the critical region. Otherwise don't reject H_0.
Hypotheses About a Single Element of β: The t Test

- Consider testing
 \[H_0 : \beta_j = \beta_j^0 \]
 (33)
 against
 \[H_1 : \beta_j \neq \beta_j^0 \]
 (34)
 where β_j^0 is the value of the population parameter β_j specified by the null hypothesis.

- Such a test is called a **two–sided test** because the alternative hypothesis H_1 allows for deviations in both directions of β_1 from the value specified by the null.

- Our **test statistic** is
 \[t_{\hat{\beta}_j} = \frac{\hat{\beta}_j - \beta_j^0}{\hat{\sigma}_{\hat{\beta}_j}}, \]
 and we know that, if the null hypothesis holds, i.e., $\beta_j = \beta_j^0$
 \[t_{\hat{\beta}_j} \sim t(n - k - 1). \]
 (35)
• We reject the null hypothesis if the observed value of t_{β_j} is rather unlikely under the null hypothesis, i.e., if t_{β_j} is large in magnitude.

• More precisely, we reject H_0 if, under the null hypothesis, the probability of observing a value of $|t_{\beta_j}|$ or larger is smaller than the prespecified significance level α.

• The significance level α implies a specific critical value, c, which is implicitly defined by

$$\Pr(|t_{\beta_j}| > c | H_0 \text{ is true}) = \alpha,$$ \hspace{1cm} (36)

i.e., c is the $1 - \alpha/2$ quantile of the $t(n - k - 1)$ distribution.

• We reject H_0 if $|t_{\beta_j}| > c = t_{\alpha/2}^{n-k-1}$.
• Suppose that \(n - k - 1 = 18 \), and we want to test

\[
H_0 : \beta_j = \beta_j^0
\]

against the alternative hypothesis

\[
H_1 : \beta_j \neq \beta_j^0
\]

at a significance level of 5\%, i.e., \(\alpha = 0.05 \) (which is often used).

• By inspection of Table 2, we observe that the \(1 - \alpha/2 = 1 - 0.05/2 = 0.975 \) quantile of the \(t(18) \) distribution is 2.101.

• So we reject \(H_0 \) at the 5\% level if

\[
|t_{\beta_j}| > 2.101 = c.
\]

• The situation is illustrated in the following figure.
5% rejection rule for alternative $H_1: \beta_j \neq \beta_j^0$ with 18 degrees of freedom.
Note on Terminology: “Accept H_0” vs. “Fail to reject H_0”

• When H_0 is not rejected, this is reported as “we fail to reject H_0 at the \((100\alpha)\%\) level” rather than as “H_0 is accepted at the \((100\alpha)\%\) level”.

• The reason is that there are generally infinitely many hypotheses that cannot be rejected.

• In particular, we cannot reject $H_0 : \beta_j = \beta^0_j$ at significance level α against a two–sided alternative if and only if β^0_j is contained in a $1 - \alpha$ confidence interval.

• To see this, note that we do not reject H_0 if and only if

$$-t_{n-k-1}^{\alpha/2} \leq \frac{\hat{\beta}_j - \beta^0_j}{\hat{\sigma}_{\hat{\beta}_j}} \leq t_{n-k-1}^{\alpha/2}$$

$$\Leftrightarrow \hat{\beta}_j - t_{n-k-1}^{\alpha/2} \hat{\sigma}_{\hat{\beta}_j} \leq \beta^0_j \leq \hat{\beta}_j + t_{n-k-1}^{\alpha/2} \hat{\sigma}_{\hat{\beta}_j},$$

i.e., $\beta^0_j \in \text{CI}_{1-\alpha}$.

\(25\)
• Thus, for any β_j^0 in the $1 - \alpha$ confidence interval, we cannot reject $H_0 : \beta_j = \beta_j^0$.

• Note how knowing an $1 - \alpha$ confidence interval allows to test any hypothesis $H_0 : \beta_j = \beta_j^0$ against $H_1 : \beta_j \neq \beta_j^0$ at significance level α.

• Failing to reject H_0 simply means that the evidence in the data against H_0 is not strong enough at the pre-specified significance level.

• But we cannot say we accept H_0.

In applications, we are often interested in testing the hypothesis

\[H_0 : \beta_j = 0, \]

where \(\beta_j^0 \) in (33).

Recall that \(\beta_j \) measures the partial effect of \(x_j \) on the expected value of \(y \), after controlling for the other regressors.

Thus, hypothesis (39) means that \(x_j \) has no partial effect on \(y \).

The alternative in this case is

\[H_1 : \beta_j \neq 0. \]

If (39) is rejected against (40) at the, e.g., 5% level, then this is often expressed as “\(x_j \) is statistically significant at the 5% level”; otherwise “\(x_j \) is statistically insignificant at the 5% level”.
Example: Wage Equation

- Consider the wage equation

 \[
 \log(wage) = \beta_0 + \beta_1 \cdot educ + \beta_2 \cdot exper + \beta_3 \cdot tenure + u, \quad (41)
 \]

 where

 - wage is average hourly earnings,
 - educ is years of education,
 - exper is years of potential experience,
 - tenure is years with current employer.

- We might be interested in testing whether the experience has no impact on wage after controlling for education and tenure, i.e., we specify

 \[H_0 : \beta_2 = 0. \quad (42) \]
• We estimate

$$\hat{\log(wage)} = 0.2844 + 0.0920 \text{educ} + 0.0041 \text{exper} + 0.0221 \text{tenure},$$

where standard errors are given in parentheses.

• In this case, $n = 526$, $k + 1 = 4$, so $n - k - 1$ is rather large, and we can use the critical values implied by the normal distribution.

• Thus, at the 5% and 1% levels, we would have

$$c_{0.05} = 1.96, \quad \text{and} \quad c_{0.01} = 2.576,$$

respectively.

• The t statistic is

$$t_{\hat{\beta}_2} = \frac{0.0041}{0.0017} = 2.412. \quad (43)$$

• Thus, we reject H_0 at the 5% level, but not at the 1% level.
The *p*-value

- This illustrates that there might be a certain degree of subjectivity in the approach, since the significance level is chosen ahead of time.

- As different people may prefer different significance levels, it is often useful to report the *p*-value of a test.

- The decision to reject or not reject H_0 depends on the critical value $t_{n-k-1}^{1-\alpha/2}$.

- If the significance level α becomes smaller, then we move farther into the tails to determine the critical value.

- That is, the smaller is α, the more “difficult” it is to reject H_0.

- The *p*-value is the *smallest significance level at which the null hypothesis would be rejected*, given the observed value of the t statistic.

- Therefore, the *p*-value might be viewed as a measure for the strength of evidence against the null hypothesis: The smaller the value, the stronger the evidence against H_0.
When the p–value is reported, decisions can be made regarding any significance level α according to the rule

$$p – \text{value} \begin{cases} \leq \\ > \end{cases} \alpha \Leftrightarrow \begin{cases} \text{reject } H_0 \\ \text{do not reject } H_0. \end{cases}$$
• To find the \(p \)-value for our testing problem above, we have to find the probability that, under the null hypothesis, \(|t_{\hat{\beta}_2}| > 2.412 \).

• To do so, we calculate, using the cumulative distribution function (cdf) of the standard normal distribution,

\[
Pr(t_{\hat{\beta}_2} < -2.412|H_0) + Pr(t_{\hat{\beta}_2} > 2.412|H_0) = 2Pr(t_{\hat{\beta}_2} < -2.412|H_0)
= 2Pr(t_{\hat{\beta}_2} > 2.412|H_0)
= 0.0159 = p - \text{value}.
\]

• Thus, the evidence against \(H_0 \) appears to be strong.
Statistical Significance vs. Economic Significance

- It might be argued, however, that the effect of experience is not that large economically.

- For example, increasing experience by 5 years increases (predicted) $\log(wage)$ by $5 \times 0.0041 = 0.0205$, i.e., (predicted) wage is 2% higher.

- It is essential that the economic or practical implications of estimated parameters are always discussed, i.e., that their magnitude is taken into account in addition to their statistical significance, since economic significance need not always accompany statistical significance.

- This is related to the too–large sample size problem: The t–statistic for $H_0 : \beta_j = 0$ is

$$ t_{\hat{\beta}_j} = \frac{\hat{\beta}_j}{\hat{\sigma}_{\hat{\beta}_j}}. $$

1See, e.g., Peter Kennedy: A Guide to Econometrics, Ch. 4, for discussion.
Now almost any relevant independent variable will have some influence, however small, i.e., $\beta_j \neq 0$, although the magnitude may be insignificant economically.

As the sample size n increases, $\hat{\sigma}_{\hat{\beta}_j}$ decreases, and so eventually the t statistic will eventually become statistically significant.

Clearly this does not imply that we should use smaller samples—a larger sample means more information and more precise estimates, which is good.

However, it should be discussed whether an effect of primary interest is economically meaningful.

Such discussion may also include the uncertainty about the parameter, which can be fostered, e.g., by reporting confidence intervals.

It seems also reasonable to use smaller significance levels as the sample size increases, but clearly this does not settle the issue of economic importance.
One–sided Alternatives

- On the basis of economic theory or common sense, we can often specify a one–sided alternative of the form

$$H_1 : \beta_j > \beta_j^0.$$ \hspace{1cm} (44)

- Formally, the null hypothesis is then

$$H_0 : \beta_j \leq \beta_j^0.$$ \hspace{1cm} (45)

- In statistical terms, the null hypothesis (45) is composite, i.e., it contains more than a single value for β_j.

- The probability of rejection depends on β_j.

- We choose the critical value such that the largest value of the type I error under H_0 is α.
That is, we consider the distribution of the test statistic at the boundary of the null hypothesis, i.e., β_0^j.

- If $\beta_j = \beta_0^j$, then the type I error is equal to α.

- If $\beta_j < \beta_0^j$, then the type I error is actually smaller than α.

- To see this, assume $\beta_j \leq \beta_0^j$. Then

$$\frac{\beta_j - \beta_0^j}{\hat{\sigma}_\beta_j} \leq 0,$$

and the t–statistic

$$t_{\hat{\beta}_j} = \frac{\hat{\beta}_j - \beta_0^j}{\hat{\sigma}_\beta_j} = \frac{\hat{\beta}_j - \beta_j}{\hat{\sigma}_\beta_j} + \frac{\beta_j - \beta_0^j}{\hat{\sigma}_\beta_j} \leq \frac{\hat{\beta}_j - \beta_j}{\hat{\sigma}_\beta_j}.$$
• Hence

\[
\text{Pr} \left(t_{\hat{\beta}_j} > t_{1-\alpha}^{n-k-1} | H_0 \right) = \text{Pr} \left(\frac{\hat{\beta}_j - \beta_j^0}{\hat{\sigma}_{\hat{\beta}_j}} > t_{1-\alpha}^{n-k-1} | H_0 \right) \\
= \text{Pr} \left(\frac{\hat{\beta}_j - \beta_j^0}{\hat{\sigma}_{\hat{\beta}_j}} + \frac{\beta_j - \beta_j^0}{\hat{\sigma}_{\hat{\beta}_j}} > t_{1-\alpha}^{n-k-1} | H_0 \right) \\
\leq \text{Pr} \left(\frac{\hat{\beta}_j - \beta_j}{\hat{\sigma}_{\hat{\beta}_j}} > t_{1-\alpha}^{n-k-1} | H_0 \right) \\
= \alpha.
\]

• That is, \(\alpha \) measures the minimum degree of protection against a type I error provided by the test.

• This guarantees strong evidence against \(H_0 \) in case of rejection.
• In summary, the procedure of the test is basically the same as before:

• With H_0 being rejected if the t–statistic

\[
t_{\hat{\beta}_j} > c = t_{1-\alpha}^{n-k-1},
\]

where c is the $(1 - \alpha)$–quantile of the t distribution with $n - k - 1$ degrees of freedom, so that

\[
\Pr(t_{\hat{\beta}_j} > c \mid H_0 \text{ is true}) = \alpha.
\]

• Note that the critical value is given by the $(1 - \alpha)$–quantile rather then $(1 - \alpha/2)$–quantile for one–sided tests.

• The situation for $H_1: \beta_j > 0$ (and that for $H_1: \beta_j < 0$) is illustrated in the following two figures for $\alpha = 0.05$ and $n - k - 1 = 18$, so that, from Table (2), $c = 1.734$.
5% rejection rule for the alternative \(H_1 : \beta_j > 0 \) with 18 degrees of freedom.
• If the alternative hypothesis is, instead of (44)

\[H_1 : \beta_j < \beta_j^0, \]

then the null is

\[H_0 : \beta_j \geq \beta_j^0, \]

and \(H_0 \) is rejected if

\[t_{\hat{\beta}_j} < c = - t_{n-k-1}^{1-\alpha} = t_{\alpha}^{n-k-1}, \]

i.e., critical value \(c \) is the \(\alpha \)–quantile of the \(t \) distribution with \(n-k-1 \) degrees of freedom, or minus the \((1-\alpha)\)–quantile of that distribution.
5% rejection rule for the alternative \(H_1 : \beta_j < 0 \) with 18 degrees of freedom.
For example, in the wage equation (41), it may be reasonable to hypothesize that the coefficient of exper (i.e., β_2) is positive.

For $\alpha = 0.05$ and $\alpha = 0.01$, the critical values are given by the 0.95 and 0.99 quantiles of the normal distribution, i.e., by 1.645 and 2.326, respectively.

We have already calculated the t statistic as

$$t_{\beta_2} = \frac{0.0041}{0.0017} = 2.412,$$

i.e., we reject H_0 even at the 1% level.

The p–value for the one–sided alternative can likewise be calculated as

$$p\text{–value} = \Pr(t_{\beta_2} > 2.412|H_0 \text{ is true}) = 0.0079,$$

which is just the p–value for the two–sided hypothesis divided by 2.