C O U R S E M A T E R I A L

1.1 Sums and Products

Definitions: \[\sum_{i=1}^{N} X_i = X_1 + X_2 + \ldots + X_N \]
\[\prod_{i=1}^{N} X_i = X_1 \cdot X_2 \cdot \ldots \cdot X_N \]
\[\sum_{i=1}^{N} \sum_{j=1}^{N} Z_{ij} = \sum_{i=1}^{N} (Z_{i1} + Z_{i2} + \ldots + Z_{iN}) \]
\[= (Z_{11} + Z_{12} + \ldots + Z_{1N}) + \ldots + (Z_{N1} + Z_{N2} + \ldots + Z_{NN}) \]

Rule 1: \[\sum_{i=1}^{N} k = N \cdot k \]
Rule 2: \[\sum_{i=1}^{N} k \cdot X_i = k \sum_{i=1}^{N} X_i \]
Rule 3: \[\sum_{i=1}^{N} (X_i + Y_i) = \sum_{i=1}^{N} X_i + \sum_{i=1}^{N} Y_i \]
Rule 4: \[\sum_{i=1}^{N} (X_i - \bar{X}) = 0 \text{ mit } \bar{X} = \frac{1}{N} \sum_{i=1}^{N} X_i \]
Rule 5: \[\frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})(Y_i - \bar{Y}) = \frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X}) \cdot Y_i \]
\[= \frac{1}{N} \sum_{i=1}^{N} X_i \cdot (Y_i - \bar{Y}) = \frac{1}{N} \sum_{i=1}^{N} X_i \cdot Y_i - \bar{X} \cdot \bar{Y} \]
Rule 6: \[\frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})^2 = \frac{1}{N} \sum_{i=1}^{N} X_i^2 - \bar{X}^2 \]
Rule 7: \[\prod_{i=1}^{N} (X_i \cdot Y_i) = (\prod_{i=1}^{N} X_i) \cdot (\prod_{i=1}^{N} Y_i) \]
Rule 8: \[\prod_{i=1}^{N} X_i^k = (\prod_{i=1}^{N} X_i)^k \]
Rule 9: \[\sum_{i=1}^{N} \sum_{j=1}^{N} X_i \cdot Y_j = \sum_{j=1}^{N} \sum_{i=1}^{N} X_i \cdot Y_j \]
Rule 10: \[\sum_{i=1}^{N} \sum_{j=1}^{N} X_i \cdot Y_j = (\sum_{i=1}^{N} X_i) \cdot (\sum_{j=1}^{N} Y_j) \]
Rule 11: \[\sum_{i=1}^{N} \sum_{j=1}^{N} (Z_{ij} + A_{ij}) = \sum_{i=1}^{N} \sum_{j=1}^{N} Z_{ij} + \sum_{i=1}^{N} \sum_{j=1}^{N} A_{ij} \]
1.2 Statistics and Probability Theory

Reference: WO Appendix B-C, Greene App. B-D

Random Variable (RV) x taking values x_i

Probability distribution: $f(x_i) = \text{Prob}(x = x_i)$ for discrete RV

i) $0 \leq \text{Prob}(x = x_i) \leq 1$

ii) $\sum_{x_i} f(x_i) = 1$

Continuous RV: Density $f(x_i) \geq 0$

i) $\text{Prob}(a \leq x \leq b) = \int_a^b f(t)dt$

ii) $\int_{-\infty}^{\infty} f(t)dt = 1$

Cumulative distribution function CDF

$\text{Prob}(x \leq x_i) = F(x_i) = \begin{cases}
\sum_{t \leq x_i} f(t) & : \text{discrete} \\
\int_{-\infty}^{x_i} f(t)dt & : \text{continuous}
\end{cases}$

For continuous case: $f(x_i) = \frac{dF(x_i)}{dx_i}$

Expected value (Mean):

$\mu \equiv E_x = \begin{cases}
\sum_{x_i} x_i f(x_i) & : \text{discrete} \\
\int_{-\infty}^{\infty} t f(t)dt & : \text{continuous}
\end{cases}$

Variance:

$\sigma^2 \equiv \text{Var}(x) = E[(x - \mu)^2]$

$\sigma^2 = \begin{cases}
\sum_{x_i} (x_i - \mu)^2 f(x_i) & : \text{discrete} \\
\int_{-\infty}^{\infty} (t - \mu)^2 f(t)dt & : \text{continuous}
\end{cases}$
Standard deviation:

$$\sigma = \sqrt{\sigma^2} = \sqrt{\text{Var}(x)}$$

Chebychev’s Inequality

$$\text{Prob}(|x - \mu| \geq \delta) \leq \frac{\sigma^2}{\delta^2}$$

$$\mathbb{E} g(x) = \left\{ \begin{array}{ll}
\sum x_i g(x_i) f(x_i) & : \text{discrete} \\
\int_{-\infty}^{\infty} g(t) f(t) dt & : \text{continuous}
\end{array} \right.$$

In general: $$\mathbb{E} g(x) \neq g(\mathbb{E}(x))$$

Jensen’s inequality:

$$\mathbb{E} g(x) \leq g(\mathbb{E}(x)) \text{ for } g''(x) < 0$$ \text{concave}

$$\mathbb{E} g(x) \geq g(\mathbb{E}(x)) \text{ for } g''(x) > 0$$ \text{convex}

E.g. $$\mathbb{E} \log(x) \leq \log(\mathbb{E}(x))$$

Normal distribution

$$x \sim \mathcal{N}(\mu, \sigma^2) \text{ with density } f(x_i) = \frac{1}{\sqrt{2\pi \sigma}} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}$$

$$\mathbb{E} x = \mu \text{ and } \text{Var}(x) = \sigma^2$$
Standard Normal $z \sim N(0,1)$

Define density: $\phi(z_i) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z_i^2}{2}}$

$F(z_i) = \Phi(z_i) = \int_{-\infty}^{z_i} \phi(t)dt = \int_{-\infty}^{z_i} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$

$F_x(x_i) = \text{Prob}(x \leq x_i) = \text{Prob}\left(\frac{x - \mu}{\sigma} \leq \frac{x_i - \mu}{\sigma}\right)$

$= \text{Prob}\left(z \leq \frac{x_i - \mu}{\sigma}\right) = \Phi\left(\frac{x_i - \mu}{\sigma}\right)$

Skewness: $S \equiv E[(x-\mu)^3] = 0$ for normal distribution

Kurtosis: $E[(x-\mu)^4] = 3\sigma^4$ for normal distribution

Excess Kurtosis (relative to normal):

$$\frac{E[(x-\mu)^4]}{\sigma^4} - 3 = 0$$ for normal distribution

Chi-squared– (χ^2), t– and F–distribution:

χ^2–distribution: z_1, \ldots, z_n independent $N(0,1)$

$$y = \sum_{j=1}^{n} z_j^2 \sim \chi^2_n$$–distributed with n degrees of freedom
F- Distribution:

- \(y_1 \sim \chi^2_{n_1} \), \(y_2 \sim \chi^2_{n_2} \)
- \(y_1 \) and \(y_2 \) independent

\[
F(n_1, n_2) = \frac{y_1/n_1}{y_2/n_2} \sim F\text{-distributed with } n_1 \text{ degrees of freedom in numerator and } n_2 \text{ degrees of freedom in denominator}
\]

Stylized shape of probability density function of \(\chi^2_n \) or \(F(n_1, n_2) \)

t-distribution:

\[
t = \frac{z}{\sqrt{\frac{y}{n}}} \sim t_n \text{ distributed (t-distribution with n degrees of freedom)}
\]

\(z \sim N(0, 1) \), \(y \sim \chi^2_n \), and \(y, z \) independent
\(t_n \sim f_n(z_i) \rightarrow \phi(z_i) \text{ for } n \rightarrow \infty \)

Note: \(t^2 \sim F(1, n) \)

Joint distribution: \(x, y \) RV

\[
\text{Prob}(a \leq x \leq b, c \leq y \leq d) = \begin{cases}
\sum_{a \leq x_i \leq b} \sum_{c \leq y_j \leq d} f(x_i, y_j) & : \text{discrete} \\
\int_a^b \int_c^d f(t, s) \, ds \, dt & : \text{continuous}
\end{cases}
\]

Probability density function: \(f(t, s) \geq 0 \)

\[
\sum_{x_i} \sum_{y_j} f(x_i, y_j) = 1 \quad \text{discrete}
\]

\[
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t, s) \, ds \, dt = 1 \quad \text{continuous}
\]

Distribution function:

\[
F(x_i, y_j) = \text{Prob}(x \leq x_i, y \leq y_j) = \begin{cases}
\sum_{x \leq x_i} \sum_{y \leq y_j} f(x_i, y_i) & : \text{discrete} \\
\int_{-\infty}^{x_i} \int_{-\infty}^{y_j} f(t, s) \, ds \, dt & : \text{continuous}
\end{cases}
\]
Expected value of function of \((x, y)\):

\[
E \ g(x, y) = \begin{cases}
\sum \sum g(x_i, y_j)f(x_i, y_j) & : \text{discrete} \\
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(t, s)f(t, s) \, ds \, dt & : \text{continuous}
\end{cases}
\]

Covariance between \(x\) and \(y\):

\[
\sigma_{xy} \equiv Cov(x, y) = E[(x - Ex)(y - Ey)] = E xy - (Ex)(Ey)
\]

\(x, y\) independent:

\[
f(x_i, y_i) = f(x_i)f(y_i) \quad \Rightarrow \quad Cov(x, y) = 0
\]

Correlation:

\[
r_{xy} = \frac{Cov(x, y)}{\sqrt{Var(x) \cdot Var(y)}} = \frac{\sigma_{xy}}{\sigma_x \sigma_y}
\]

Rules:

\(a, b, c, d = \text{constants}\)

\[
E(ax + by + c) = a \ Ex + b \ Ey + c
\]

\[
Var(ax + by + c) = a^2 \ Var(x) + b^2 \ Var(y) + 2ab \ Cov(x, y)
\]

\[
Cov(ax + by, cx + dy) = ac \ Var(x) + bd \ Var(y) + (ad + bc) \ Cov(x, y)
\]

Conditional distribution:

\[
f(y = y_j|x = x_i) \equiv f(y_j|x_i) = \frac{f(x_i, y_j)}{f(x_i)}
\]

Conditional expectation:

\[
E(y|x = x_i) = \int_{-\infty}^{\infty} sf(y = s|x_i) \, ds
\]
Conditional variance:

\[\text{Var}(y|x = x_i) = E[(y - E(y|x = x_i))^2|x = x_i] = \int_{-\infty}^{\infty} (s - E(y|x = x_i))^2 f(s|x_i) ds \]

The Role of Conditional Expectations in Econometrics

• \(y \) explained/dependent/response variable

• \(x = (x_1, \ldots, x_k) \) explanatory / independent variables, regressors, control variables, covariates

Structural conditional expectation (CE): \(E(y|w, c) \)

Based on random sample of \((y, w, c)\) we can estimate the effect of \(w \) on \(y \) holding \(c \) constant.

Complications arise when there is no random sample of \((y, w, c)\)

→ measurement error

→ simultaneous determination of \(y, w, c \)

→ some variables we would like to control for (elements of \(c \)) cannot be observed

\(\Rightarrow \) CE of interest involves data for which the econometrician cannot collect data or requires an experiment that cannot be carried out.

Identification assumptions:

→ Can recover structural CE of interest
Definition: y (random variable) explained variable

$x \equiv (x_1, x_2, ..., x_k)$ \hspace{1em} (1 \times k)\text{-vector of explanatory variables}

$E(|y|) < \infty$

then function $\mu : \mathbb{R}^k \rightarrow \mathbb{R}$

$(CE) \quad E(y|x_1, x_2, ..., x_k) = \mu(x_1, x_2, ..., x_k) \text{ or } E(y|x) = \mu(x)$

Distinguish

$E(y|x)$ \hspace{3em} \text{random variable because } x \text{ is a random variable}

from

$E(y|x = x_0)$ \hspace{3em} \text{conditional expectation when } x \text{ takes specific value } x_0$

\rightarrow Distinction most of the time not important

\rightarrow Use $E(y|x)$ as short hand notation

Parametric model for $E(y|x)$ where $\mu(x)$ depends on a finite set of unknown parameters

Examples:

(i) $E(y|x_1, x_2) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$

(ii) $E(y|x_1, x_2) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_2^2 + \beta_4 x_1 x_2$

(iii) $E(y|x_1, x_2) = \exp[\beta_0 + \beta_1 \log(x_1) + \beta_2 x_2]$ \hspace{0.5em} with \hspace{0.5em} $y \geq 0, \hspace{0.5em} x_1 > 0$

(i) is linear in parameters and explanatory variables

(ii) is linear in parameters and nonlinear in explanatory variables

(iii) is nonlinear in both
Partial Effect:

- Continuous x_i, and differentiable μ
 \[
 \Delta E(y|x) = \frac{\partial \mu}{\partial x_j} \Delta x_j \quad \text{holding } x_1, \ldots, x_{j-1}, x_{j+1}, \ldots, x_k \text{ fixed}
 \]
 \[
 \equiv \text{ ceteris paribus effect for properly specified population model}
 \]

- Discrete $x_j : x_{j,0} \rightarrow x_{j,1}$
 \[
 \Delta E(y|x) = E(y|x_1, \ldots, x_{j-1}, x_{j,1}, x_{j+1}, \ldots, x_k) - E(y|x_1, \ldots, x_{j-1}, x_{j,0}, x_{j+1}, \ldots, x_k)
 \]

Examples:

ad i) \[
\frac{\partial E(y|x)}{\partial x_1} = \beta_1 = \text{ constant}
\]

ad ii) \[
\frac{\partial E(y|x)}{\partial x_1} = \beta_1 + \beta_4 x_2 \quad \text{i.e. partial effect of } x_1 \text{ varies with } x_2
\]

ad iii) \[
\frac{\partial E(y|x)}{\partial x_1} = \exp[\beta_0 + \beta_1 \log(x_1) + \beta_2 x_2] \frac{\beta_1}{x_1} \rightarrow \text{ highly nonlinear}
\]

(Partial) Elasticity (only continuous case)

\[
\frac{\partial E(y|x)}{\partial x_j} \cdot \frac{x_j}{E(y|x)} = \frac{\partial \log[E(y|x)]}{\partial \log[x_j]}
\]

(Partial) Semielasticity:

\[
\frac{\partial E(y|x)}{\partial x_j} \cdot \frac{1}{E(y|x)} = \frac{\partial \log[E(y|x)]}{\partial x_j}
\]
Error form of models of conditional expectations

We can always write

\[y = E(y|x) + u \quad \text{where} \quad u = y - E(y|x) \]

and it follows by definition

\[E(u|x) = 0 \]

Implications:

1. \(E(u) = 0 \)

2. \(u \) is uncorrelated with any function of \(x_1, \ldots, x_k \)

Implication 1. follows from the law of iterated expectations

\[\text{LIE : } E(y|x) = E[E(y|w)|x] \quad \text{if} \quad x = f(w) \]

i.e. \{Information set incorporated in \(x \} \subseteq \{Information set incorporated in \(w \}

i) \(E(y|x) = E[E(y|w)|x] \)

\[\rightarrow \text{integrating out } w \text{ wrt } x: \int y f(y|x)dy = \int [\int y f(y|w, x)dy] f(w|x)dw \]

ii) \(E(y|x) = E[E(y|x)|w] \)

Knowing \(w \) implies knowing \(x \)

\[\rightarrow \text{Routinely used in the course} \]

'The smaller information set always dominates'
Most important special case: \(w = (x, z) \)

\[
\frac{E(y|x)}{\mu_1(x)} = \frac{E[E(y|x, z)|x]}{\mu_2(x, z)}
\]

\[
\hat{\mu}_1 \text{ observed} = E[\mu_2(x, z)|x]
\]

Identification problem: Can we link the estimable \(\mu_1(x) \) to the structural \(\mu_2(x, z) \) which is the causal relationship of interest?

Therefore

\[E(u) = E_x[E(u|x)] = E_x0 = 0 \]

and

\[E(u|f(x)) = E[E(u|x)|f(x)] = E[0|f(x)] = 0 \]

which gives implication 2

Example:

\[y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u \]

with

\[E(u|x_1, x_2) = 0 \]

implies: \(E(u) = 0, Cov(x_1, u) = 0, Cov(x_2, u) = 0 \) and \(u \) is also uncorrelated with \(x_1^2, x_2^2, x_1x_2, \exp(x_1) \) etc.

i.e. the functional form of \(E(y|x) \) is properly specified.

We have \(\beta_2 = \frac{\partial E(y|x_1, x_2)}{\partial x_2} \) because \(E(u|x_1, x_2) = 0 \), i.e. \(u \) is uncorrelated with any function of \(x_2 \). Thus \(\beta_2 \) describes the mean impact of \(x_2 \) on \(y \).

\[E(u|x_1, x_2) = 0 \] sometimes called mean independence

We have:

Independence \(\Rightarrow \) Mean Independence \(\Rightarrow \) Uncorrelatedness

\(\Leftrightarrow \) \(\Leftrightarrow \)
Different nested sets of conditioning variables

\[\begin{array}{cc}
\hat{x}, \hat{z} & \text{versus} & \hat{x} \\
\text{more information} & \text{less information}
\end{array} \]

\[\begin{align*}
\mu_1(x) & = E(y|x) \\
\mu_2(x, z) & = E(y|x, z)
\end{align*} \]

By LIE, we have ('integrating \(z \) out')

\[\begin{align*}
\mu_1(x) = E(y|x) & = E[E(y|x, z)|x] \\
& = E[\mu_2(x, z)|x]
\end{align*} \]

\[\rightarrow \] allows to study effects of omitted regressors/unobserved components \(z \) on the relationship between \(y \) and \(x \).

Example: Wage Equation

\[E(wage|educ, exper) = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 exper^2 + \beta_4 educ \cdot exper \]

\[= E(wage|educ, exper, exper^2, educ \cdot exper) \]

by LIE, i.e. it is redundant to condition on \(exper^2 \) and \(educ \cdot exper \).
Conditional Variance

The conditional variance of \(y \) given \(x \) is defined as

\[
\text{Var}(y|x) \equiv \sigma^2(x) \equiv E[(y - E(y|x))^2|x]
\]

\[
= E(y^2|x) - [E(y|x)]^2
\]

Note: \(\sigma^2(x) \) is a random variable when \(x \) is viewed as a random vector.

Properties:

\[
\text{Var}(a(x)y + b(x)|x) = [a(x)]^2\text{Var}(y|x)
\]

Decomposition of variance (corresponds to LIE)

\[
\text{Var}(y) = E[\text{Var}(y|x)] + \text{Var}(E(y|x))
\]

where \(\mu(x) = E(y|x) \).

Extension (further conditioning variable \(z \))

\[
\text{Var}(y|x) = E[\text{Var}(y|x, z)|x] + \text{Var}[E(y|x, z)|x]
\]

Consequently:

\[
E[\text{Var}(y|x)] \geq E[\text{Var}(y|x, z)]
\]

→ further conditioning variables \(z \) reduce the average conditional variances.
Probability Limit and Consistency of an Estimator

Motivation: For many econometric problems, the analytical properties of the estimator can only be determined asymptotically.

Definition 1: The probability limit θ of a sequence of random variables $\hat{\theta}_N$ results as the limit for N going to infinity such that the probability that the absolute difference between $\hat{\theta}_N$ and θ is less than some small positive ε goes to one. Mathematically this is expressed by

$$
\lim_{N \to \infty} P\{|\hat{\theta}_N - \theta| < \varepsilon\} = 1 \quad \text{for every} \quad \varepsilon > 0
$$

and abbreviated by $plim_{N \to \infty} \hat{\theta}_N = \theta$ (or $\hat{\theta}_N \xrightarrow{P} \theta$).

Definition 2: An estimator $\hat{\theta}_N$ for the true parameter value θ is (weakly) consistent, if

$$
plim_{N \to \infty} \hat{\theta}_N = \theta.
$$

Remarks: 1. The sample mean \bar{Y}_N of a sequence of random variables Y_i with expected value $E(Y_i) = \mu_Y$ is under very general conditions a consistent estimator of μ_Y, d.h. $plim \bar{Y}_N = \mu_Y$.

2. For two sequences of random variables $\hat{\theta}_{1,N}$ and $\hat{\theta}_{2,N}$ it follows:

$$
plim (\hat{\theta}_{1,N} + \hat{\theta}_{2,N}) = plim \hat{\theta}_{1,N} + plim \hat{\theta}_{2,N},
$$

$$
plim (\hat{\theta}_{1,N} \cdot \hat{\theta}_{2,N}) = plim \hat{\theta}_{1,N} \cdot plim \hat{\theta}_{2,N},
$$

$$
plim \left(\frac{\hat{\theta}_{1,N}}{\hat{\theta}_{2,N}} \right) = \frac{plim \hat{\theta}_{1,N}}{plim \hat{\theta}_{2,N}}
$$

Slutzky’s Theorem: $plim g (\hat{\theta}_N) = g \left(plim \hat{\theta}_N \right)$ at continuity points of $g(.)$
Convergence and Asymptotic Orders of Magnitude

Motivation: For many semiparametric problems it is important to determine the speed of convergence, i.e. the asymptotic order of magnitude.

Definition 1 (Fixed Sequences): The sequence \(\{X_N\} \) of real numbers is said to be at most of order \(N^k \) and is denoted by

\[
X_N = O(N^k) \quad \text{if} \quad \lim_{N \to \infty} \frac{X_N}{N^k} = c
\]

for some constant \(c \).

Definition 2 (Fixed Sequences): The sequence \(\{X_N\} \) of real numbers is said to be of smaller order than \(N^k \) and is denoted by

\[
X_N = o(N^k) \quad \text{if} \quad \lim_{N \to \infty} \frac{X_N}{N^k} = 0
\]

Definition 3 (Stochastic Sequences): The sequence of random variables \(\{X_N\} \) is said to be at most of order \(N^k \) and is denoted by

\[
X_N = O_p(N^k)
\]

if for every \(\varepsilon > 0 \) there exist numbers \(C \) and \(\tilde{N} \) such that

\[
P \left\{ \left| \frac{X_N}{N^k} \right| > C \right\} < \varepsilon \quad \text{for all} \quad N > \tilde{N}.
\]

Definition 4 (Stochastic Sequences): The sequence of random variables \(\{X_N\} \) is said to be of smaller order than \(N^k \) and is denoted by

\[
X_N = o_p(N^k) \quad \text{if} \quad \plim_{N \to \infty} \frac{X_N}{N^k} = 0
\]

16
Chebychev’s Law of Large Numbers: Let the random variables \(\{X_i\} \) be uncorrelated with \(EX_i = \mu_i \) and \(Var(X_i) = \sigma_i^2 < \infty \) in a sample of size \(N \) (\(i = 1, \ldots, N \)). Then

\[
\bar{X}_N - \bar{\mu}_N \xrightarrow{P} 0
\]

if \(\bar{\sigma}^2 \to 0 \), as \(N \) goes to infinity where \(\bar{X}_N = \frac{1}{N} \sum_{i=1}^{N} X_i \) denotes the sample mean, \(\bar{\mu}_N = \frac{1}{N} \sum_{i=1}^{N} \mu_i \) and \(\bar{\sigma}^2 = \frac{1}{N^2} \sum_{i=1}^{N} \sigma_i^2 = \frac{1}{N} \left(\frac{1}{N} \sum_{i=1}^{N} \sigma_i^2 \right) \).

Alternative Representation:
Under the above assumptions it follows that \((\bar{X}_N - \bar{\mu}_N) = o_p(1) \)

Special Case: If \(\mu_i = \mu \) then \(\text{plim} \bar{X}_N = \mu \).

Lindberg–Levy’s Central Limit Theorem: Let \(\{X_i\} \) be a sequence of i.i.d. random variables such that \(EX_i = \mu \) and \(Var(X_i) = \sigma^2 < \infty \) in a sample of size \(N \) (\(i = 1, \ldots, N \)). Then

\[
\sqrt{N} \left(\frac{\bar{X}_N - \mu}{\sigma} \right) \xrightarrow{d} \mathcal{N}(0, 1) \quad (\text{i.e. } \bar{X}_N \text{ is } \sqrt{N} - \text{consistent}).
\]

Implication:
Under the above assumptions it follows that \((\bar{X}_N - \mu) = O_p(N^{-1/2}) \).

Liapounov’s Central Limit Theorem: Let \(\{X_{N,i}\} \) be a sequence of independently distributed random variables with \(EX_{N,i} = \mu_{N,i} \) and \(Var(X_{N,i}) = \sigma_{N,i}^2 < \infty \) in a sample of size \(N \) (\(i = 1, \ldots, N \)). Let

\[
E|X_{N,i}|^{2+\delta} < \infty \text{ for some } \delta > 0. \text{ If } \lim_{N \to \infty} \sum_{i=1}^{N} \frac{E|X_{N,i}-\mu_{N,i}|^{2+\delta}}{\tilde{\sigma}_{N,i}^{2+\delta}} = 0, \text{ then } \frac{\sum_{i=1}^{N}(X_{N,i}-\mu_{N,i})}{\tilde{\sigma}_N} \xrightarrow{d} \mathcal{N}(0, 1) \text{ for } \tilde{\sigma}_N^2 = \sum_{i=1}^{N} \sigma_{N,i}^2.
\]

Implication:
Under the above assumptions it follows that \(\frac{\sum_{i=1}^{N}(X_{N,i}-\mu_{N,i})}{\tilde{\sigma}_N} = O_p(1) \).
1.3 Matrix Algebra

Reference: WO Appendix D

Matrix: Rectangular array of numbers

\[A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nk} \end{pmatrix} \quad n \times k \text{ matrix} \]

Transpose:

\[A' = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ \vdots & \ddots & \vdots \\ a_{1k} & a_{2k} & \cdots & a_{nk} \end{pmatrix} \quad k \times n \text{ matrix} \]

\[(A + B)' = A' + B'\]

Inner Product: \(a' = (a_1, \ldots, a_n) \) and \(b' = (b_1, \ldots, b_n) \)

\[a'b = a_1b_1 + \ldots + a_nb_n = b'a \]

Matrix Multiplication

\[C_{n \times m} = A_{n \times k} \cdot B_{k \times m} \quad \Rightarrow \quad c_{ik} = a_{i \cdot} \cdot b_{\cdot k} \]

ith row of \(A \) \quad kth column of \(B \)

Identity matrix for \(n \in \mathbb{N} \):

\[I_n = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix} \quad I_nA = A \]

\[(AB)C = A(BC)\]

\[A(B + C) = AB + AC \]

\[(AB)' = B'A'\]
Example: n data points for $1 \times k$ vector $x_i = (x_{1i}, \ldots, x_{ki})$ (WO convention)

$$X = \begin{pmatrix}
 x_{11} & \cdots & x_{k1} \\
 \vdots & \ddots & \vdots \\
 x_{1n} & \cdots & x_{kn}
\end{pmatrix} \quad \text{n rows} \triangleq \text{observations}$$

Matrix product

$$X'X = \begin{pmatrix}
 x_{11} & \cdots & x_{1n} \\
 \vdots & \ddots & \vdots \\
 x_{k1} & \cdots & x_{kn}
\end{pmatrix} \cdot \begin{pmatrix}
 x_{11} & \cdots & x_{k1} \\
 \vdots & \ddots & \vdots \\
 x_{1n} & \cdots & x_{kn}
\end{pmatrix} = \begin{pmatrix}
 \sum_{i=1}^n x_{1i}^2 & \cdots & \sum_{i=1}^n x_{1i}x_{ki} \\
 \vdots & \ddots & \vdots \\
 \sum_{i=1}^n x_{ki}x_{1i} & \cdots & \sum_{i=1}^n x_{ki}^2
\end{pmatrix}$$

$$= \sum_{i=1}^n \begin{pmatrix}
 x_{1i} \\
 \vdots \\
 x_{ki}
\end{pmatrix} (x_{1i}, \ldots, x_{ki}) = \sum_{i=1}^n x_i'x_i \quad \leftarrow \text{summation notation}$$

Let $j_n = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$ be a $n \times 1$ vector of ones, then $j_nj_n' = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$

$$\begin{pmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{pmatrix},$$

and $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ $n \times 1$ vector, then

$$\frac{1}{n}j_nj_n'x = \frac{1}{n} \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \frac{1}{n} \begin{pmatrix} \sum x_i \\ \vdots \\ \sum x_i \end{pmatrix} = \begin{pmatrix} \bar{x} \\ \vdots \\ \bar{x} \end{pmatrix} = j_n\bar{x}$$

where $\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$ sample average.
Deviations from sample average

\[x - j_n \bar{x} = \begin{pmatrix} x_1 - \bar{x} \\ \vdots \\ x_n - \bar{x} \end{pmatrix} = x - \frac{1}{n} j_n j_n' x = \begin{pmatrix} I_n \\ \frac{-1}{n} j_n j_n' \end{pmatrix} x = M^0 x \]

where \(M^0 = I - \frac{1}{n} j_n j_n' \) is the matrix generating deviations from the mean (example of a projection matrix)

with

\[M^0 j_n = \left(I_n - \frac{1}{n} j_n j_n' \right) j_n = j_n - \frac{1}{n} j_n j_n' j_n = j_n - j_n = 0 \]

since \(\frac{1}{n} j_n j_n' j_n = \frac{1}{n} n = 1 \).

\(M^0 \) is an example of a so called idempotent matrix, i.e. a square matrix \(M \) with \(M^2 = MM = M \).

When \(M \) is symmetric, it follows that \(M'M = M \)

Verify:

\[M^0 M^0 = \left(I - \frac{1}{n} j_n j_n' \right) \left(I - \frac{1}{n} j_n j_n' \right) = I - \frac{1}{n} j_n j_n' - \frac{1}{n} j_n j_n' + \frac{1}{n^2} j_n j_n' j_n j_n' j_n = I - \frac{1}{n} j_n j_n' = M^0 \]

Sum of squared deviations:

\[\sum_{i=1}^{n} (x_i - \bar{x})^2 = (M^0 x)'(M^0 x) = x'M^0'M^0 x = x'M^0 x = \sum_{i=1}^{n} x_i (x_i - \bar{x}) \]
Product of deviations of x_i and y_i;

$$\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = (M^0x)'(M^0y) = x'M^0'M^0y$$

$$= x'M^0y$$

$$= \sum x_i(y_i - \bar{y})$$

$$= \sum (x_i - \bar{x})y_i$$

Empirical Variance-Covariance-Matrix of x, y

$$\text{Cov}[(x, y)] = \begin{pmatrix}
\frac{1}{n} \sum (x_i - \bar{x})^2 & \frac{1}{n} \sum (x_i - \bar{x})(y_i - \bar{y}) \\
\frac{1}{n} \sum (x_i - \bar{x})(y_i - \bar{y}) & \frac{1}{n} \sum (y_i - \bar{y})^2
\end{pmatrix}$$

$$= \frac{1}{n} \begin{pmatrix}
x'M^0x & x'M^0y \\
y'M^0x & y'M^0y
\end{pmatrix}$$

$$= \frac{1}{n} \begin{pmatrix}
x'M^0 \\
y'M^0
\end{pmatrix} (M^0x \quad M^0y)$$

$$= \frac{1}{n} \begin{pmatrix}
x' \\
y'
\end{pmatrix} M^0 (x \quad y)$$
Rank of a matrix A

= maximum number of linearly independent columns
= dimension of vector space spanned by column vectors
= maximum number of linearly independent rows
= dimension of vector space spanned by row vectors

A: $n \times k$ matrix $\rightarrow \rank(A) \leq \min(n, k)$

Properties:

i) $\rank(AB) \leq \min(\rank(A), \rank(B))$

ii) $\rank(A) = \rank(A'A) = \rank(AA')$

- Square $k \times k$ matrix A has full rank if $\rank(A) = k$.
- $n \times k$ matrix A with $n \geq k$ has full column rank if $\rank(A) = k$.
- $n \times k$ matrix A with $n \leq k$ has full row rank if $\rank(A) = n$.

Inverse of a square matrix:

Let A be a $k \times k$ matrix

Inverse A^{-1} defined by $AA^{-1} = I$ or equivalently $A^{-1}A = I$

A^{-1} exists, i.e. A is invertible (or nonsingular) $\iff A$ has full rank.
Example: Diagonal matrix

\[
A := \begin{pmatrix}
 a_1 & 0 & \cdots & 0 \\
 0 & a_2 & \cdots & \vdots \\
 \vdots & \ddots & \ddots & 0 \\
 0 & \cdots & 0 & a_k
\end{pmatrix} = \text{diag}(a_1, \ldots, a_k)
\]

\[
\Rightarrow A^{-1} = \begin{pmatrix}
 \frac{1}{a_1} & 0 & \cdots & 0 \\
 0 & \frac{1}{a_2} & \cdots & \vdots \\
 \vdots & \ddots & \ddots & 0 \\
 0 & \cdots & 0 & \frac{1}{a_k}
\end{pmatrix}
\]

Inverse A^{-1} exists if all $a_j \neq 0$ for $j = 1, \ldots, k$.

Properties:

i) $(A^{-1})^{-1} = A$

ii) $(A^{-1})' = (A')^{-1}$

iii) If A is symmetric, then A^{-1} is symmetric

iv) $(AB)^{-1} = B^{-1}A^{-1}$

v) $A = \begin{pmatrix}
 A_{11} & 0 \\
 0 & A_{22}
\end{pmatrix} \iff A^{-1} = \begin{pmatrix}
 A_{11}^{-1} & 0 \\
 0 & A_{22}^{-1}
\end{pmatrix}$ block diagonal

vi) Nonsingular matrix $B \rightarrow \text{rank}(AB) = \text{rank}(A)$
Eigenvalues (Characteristic Roots) and Eigenvectors:

Eigenvalues λ (scalars) and nonzero eigenvectors c are the solution of $Ac = \lambda c$ for square $k \times k$ matrix A.

$$Ac = \lambda c \iff (A - \lambda I_n)c = 0$$

We are looking for the nontrivial solutions $c \neq 0$ which can be found by solving the characteristic equation involving the determinant

$$\det(A - \lambda I_n) = |A - \lambda I_n| = 0$$

for λ and then finding some $c \neq 0$ for which $Ac = \lambda c$ (note c is not unique!)

Properties:

i) A has full rank (A^{-1} exists) is equivalent to all eigenvalues are nonzero ($\lambda \neq 0$)

ii) If A^{-1} exists, then its eigenvalues are the inverses of the eigenvalues of A

iii) Diagonal matrix

$$A = \begin{pmatrix} a_1 & 0 & \ldots & 0 \\ 0 & a_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \ldots & 0 & a_k \end{pmatrix}$$

Eigenvalues $\lambda_1 = a_1, \ldots, \lambda_k = a_k$

$$\begin{pmatrix} 1 \\ 0 \\ \ddots \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ \ddots \\ 0 \end{pmatrix}, \ldots, \begin{pmatrix} 0 \\ 0 \\ \ddots \\ 1 \end{pmatrix}$$

iv) $\det(A) = |A| = \prod_{j=1}^{k} \lambda_j$
Definitions:

- A is called positive definite, if all eigenvalues are strictly positive ($\lambda_j > 0$)
- A is called positive semidefinite, if all eigenvalues are nonnegative ($\lambda_j \geq 0$)
- A is called negative definite, if all eigenvalues are strictly negative ($\lambda_j < 0$)
- A is called negative semidefinite, if all eigenvalues are nonpositive ($\lambda_j \leq 0$)

Quadratic Form: $x'Ax$

- A positive definite $\iff x'Ax > 0$ for all $x \neq 0$
- A positive semidefinite $\iff x'Ax \geq 0$ for all $x \neq 0$
- A negative definite $\iff x'Ax < 0$ for all $x \neq 0$
- A negative semidefinite $\iff x'Ax \leq 0$ for all $x \neq 0$
Example:
x, y random variables with variance-covariance matrix
\[V = \begin{pmatrix} \text{Var}(x) & \text{Cov}(x, y) \\ \text{Cov}(x, y) & \text{Var}(y) \end{pmatrix} \]

- \(V \) is always positive semidefinite.
- If \(x \) and \(y \) are not perfectly correlated, then \(V \) is positive definite.
- If \(x, y \) are jointly normally distributed \(\begin{pmatrix} x \\ y \end{pmatrix} \sim \mathcal{N} \left[\begin{pmatrix} \mu_x \\ \mu_y \end{pmatrix}, V \right] \)
 then quadratic form
 \[\begin{pmatrix} x - \mu_x, y - \mu_y \end{pmatrix} V^{-1} \begin{pmatrix} x - \mu_x \\ y - \mu_y \end{pmatrix} \sim \chi_2 \]
 if \(V \) has full rank.
- \(V^{-1} \): multivariate standardization.
- Since \(V \) is positive definite also \(V^{-1} \) is positive definite. Therefore
 \[\begin{pmatrix} x & y \end{pmatrix} V^{-1} \begin{pmatrix} x \\ y \end{pmatrix} > 0 \text{ unless } \begin{pmatrix} x \\ y \end{pmatrix} = 0. \]

Trace of a matrix:

Square \(k \times k \) matrix \(A \)

\[\text{tr}(A) = \sum_{j=1}^{k} a_{jj} \quad \text{sum of diagonal elements} \]

Properties:

i) \(\text{tr}(cA) = c \cdot \text{tr}(A) \) for scalar \(c \)

ii) \(\text{tr}(A') = \text{tr}(A) \)
iii) $\text{tr}(A + B) = \text{tr}(A) + \text{tr}(B)$

iv) $\text{tr}(AB) = \text{tr}(BA)$

v) $\text{tr}(A) = \sum_{j=1}^{k} \lambda_j$ trace of matrix equals the sum of its eigenvalues

Kronecker Product:

For $n \times k$ matrix A, $l \times m$ matrix B

$$A \otimes B = \begin{bmatrix} a_{11} & \cdots & a_{1k} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nk} \end{bmatrix} \otimes B$$

$$= \begin{bmatrix} a_{11}B & a_{12}B & \cdots & a_{1k}B \\ a_{21}B & a_{22}B & \cdots & a_{2k}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}B & a_{n2}B & \cdots & a_{nk}B \end{bmatrix}$$

$$\text{nl} \times \text{km} \text{ matrix}$$

Properties:

i) $(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$

ii) $(A \otimes B)' = A' \otimes B'$

iii) $\text{tr}(A \otimes B) = \text{tr}(A) \cdot \text{tr}(B)$

iv) $(A \otimes B)(C \otimes D) = AC \otimes BD$ if AC, BD is possible
Calculus and Matrix Algebra:

First and second order Taylor series approximation

- y scalar
- $x = (x_1, \ldots, x_n)'$ $n \times 1$ vector
- $y = f(x)$ twice differentiable

Gradient:

\[
\nabla_x y := \frac{\partial y}{\partial x} = \frac{\partial f(x)}{\partial x} = \left(\begin{array}{c} \frac{\partial y}{\partial x_1} \\ \vdots \\ \frac{\partial y}{\partial x_n} \end{array} \right) = \left(\begin{array}{c} f_1 \\ \vdots \\ f_n \end{array} \right) \quad \text{column vector as convention}
\]

Hessian:

\[
H = \frac{\partial^2 y}{\partial x \partial x'} = \begin{bmatrix}
\frac{\partial^2 y}{\partial x_1^2} & \frac{\partial^2 y}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 y}{\partial x_1 \partial x_n} \\
\frac{\partial^2 y}{\partial x_2 \partial x_1} & \frac{\partial^2 y}{\partial x_2^2} & \cdots & \frac{\partial^2 y}{\partial x_2 \partial x_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^2 y}{\partial x_n \partial x_1} & \frac{\partial^2 y}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 y}{\partial x_n^2}
\end{bmatrix} = [f_{ij}]
\]

First order Taylor series approximation in $x = (x_10, \ldots, x_n0)$

\[
y = f(x) \approx f(x_0) + \sum_{i=1}^{n} f_i(x_0)(x_i - x_{i0}) = f(x_0) + \left(\frac{\partial y}{\partial x} \bigg|_{x_0} \right)'(x - x_0)
\]
Second order approximation

\[y = f(x) \approx f(x_0) + \sum_{i=1}^{n} f_i(x_0)(x_i - x_{i0}) + \]

\[\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} f_{ij}(x_0) \cdot (x_i - x_{i0}) \cdot (x_j - x_{j0}) \]

\[= f(x_0) + \left(\left. \frac{\partial y}{\partial x} \right|_{x_0} \right)' (x - x_0) + \frac{1}{2} (x - x_0)' H(x_0) (x - x_0) \]

inner product

quadratic form

Differentiation of inner products and quadratic forms:

i) \[y = a'x = \sum_{i=1}^{n} a_i x_i = x'a \]

\[\frac{\partial y}{\partial x} = \frac{\partial a'x}{\partial x} = \begin{pmatrix} a_1' \\ \vdots \\ a_n' \end{pmatrix} = a \]

ii) \[z = \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix} = Ax = \begin{pmatrix} \sum_{i=1}^{k} a_{1i}x_{1i} \\ \vdots \\ \sum_{i=1}^{k} a_{ni}x_{ni} \end{pmatrix} \]

A \(n \times k \) matrix, \(x \) \(k \times 1 \) vector, \(z \) \(n \times 1 \) vector

\[\frac{\partial z}{\partial x} = \left(\frac{\partial z_1}{\partial x}, \ldots, \frac{\partial z_n}{\partial x} \right) = A' \quad \text{columnwise gradients of } z_1, \ldots, z_n \]

iii) \[y = x'Ax = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i x_j a_{ij} \quad \text{quadratic form} \]

a) \[\frac{\partial y}{\partial x} = (A + A')x \]

If \(A \) is symmetric (\(A = A' \)), then \(\frac{\partial y}{\partial x} = 2Ax \)

b) \[\frac{\partial y}{\partial A} = xx' = \begin{pmatrix} x_1^2 & \cdots & x_1x_n \\ \vdots & \ddots & \vdots \\ x_1x_n & \cdots & x_n^2 \end{pmatrix} \]

outer product, \(n \times n \)

matrix
Expected values and variances:

Let

- a be a $k \times 1$ vector of constants
- A a $n \times k$ matrix of constants, and
- x a $k \times 1$ vector of random variables

then

$$E a'x = a'(E x) = \sum_{i=1}^{k} a_i E x_i$$

$$E Ax = A(E x) = \begin{bmatrix} \sum_{i=1}^{k} a_{1i} E x_i \\ \cdots \\ \sum_{i=1}^{k} a_{1i} E x_i \end{bmatrix}$$

$$Var(a'x) = a' Var(x)a = \sum_{i=1}^{k} \sum_{j=1}^{k} a_{ij} Cov(x_i, x_j) \quad \leftarrow \text{quadratic form}$$

$$Var(Ax) = A Var(x) A'$$