Additional Tutorial 7

Logit, Probit, Tobit

Problem 1 (Wooldridge, problem 17.1)

(i) For a binary response y, let \bar{y} be the proportion of ones in the sample (which is equal to the sample average of the y_i). Let \hat{q}_0 be the percent correctly predicted for the outcome $y = 0$ and let \hat{q}_1 be the percent correctly predicted for the outcome $y = 1$. If \hat{p} is the overall percent correctly predicted, show that \hat{p} is a weighted average of \hat{q}_0 and \hat{q}_1:

$$\hat{p} = (1 - \bar{y})\hat{q}_0 + \bar{y}\hat{q}_1$$

(ii) In a sample of 300, suppose that $\bar{y} = .70$, so that there are 210 outcomes with $y_i = 1$ and 90 with $y_i = 0$. Suppose that the percent correctly predicted when $y = 0$ is 80, and the percent correctly predicted when $y = 1$ is 40. Find the overall percent correctly predicted.

Problem 2 (Wooldridge, problem 17.5)

(Requires calculus) Let $patents$ be the number of patents applied for by a firm during a given year. Assume that the conditional expectation of patents given $sales$ and RD is

$$E(patents|sales, RD) = \exp[\beta_0 + \beta_1 \log(sales) + \beta_2 RD + \beta_3 RD^2]$$

where $sales$ is annual firm sales and RD is total spending on research and development over the past 10 years.

(i) How would you estimate the β_j? Justify your answer by discussing the nature of $patents$.

(ii) How do you interpret β_j?

(iii) Find the partial effect of RD on $E(patents|sales, RD)$.