Additional Appendix to “Long–Run Effects of Training Programs for the Unemployed in East Germany”

Bernd Fitzenberger* and Robert Völter†

January 2007

Contents

1 Estimation Results for the Propensity Score 2

1.1 Sample Sizes ... 2

1.1.1 Sample Sizes by Stratum 2

1.1.2 Sample Sizes by Quarter 3

1.2 Variable Definitions ... 4

1.3 Summary Statistics .. 5

1.4 Results of Propensity Score Estimations and Balancing Tests 13

1.5 Common Support .. 21

2 Information about the data 24

*Goethe–University Frankfurt, ZEW, IZA, IFS. Address: Department of Economics, Goethe–University, PO Box 11 19 32 (PF 247), 60054 Frankfurt am Main, Germany. E–mail: fitzenberger@wiwi.uni-frankfurt.de

†Goethe University Frankfurt, CDSEM University of Mannheim. E–mail: voelter@wiwi.uni-frankfurt.de.
1 Estimation Results for the Propensity Score

1.1 Sample Sizes

1.1.1 Sample Sizes by Stratum

<table>
<thead>
<tr>
<th></th>
<th>Women</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stratum 1</td>
<td>Stratum 2</td>
<td>Stratum 3</td>
</tr>
<tr>
<td>Waiting</td>
<td>5783 (4652)</td>
<td>3855 (2996)</td>
<td>2294 (1671)</td>
</tr>
<tr>
<td>PF</td>
<td>37</td>
<td>51</td>
<td>48</td>
</tr>
<tr>
<td>SPST</td>
<td>254</td>
<td>374</td>
<td>435</td>
</tr>
<tr>
<td>RT</td>
<td>61 (61)</td>
<td>76 (75)</td>
<td>53 (53)</td>
</tr>
<tr>
<td></td>
<td>Men</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stratum 1</td>
<td>Stratum 2</td>
<td>Stratum 3</td>
</tr>
<tr>
<td>Waiting</td>
<td>5558 (4444)</td>
<td>2705 (2046)</td>
<td>1381 (997)</td>
</tr>
<tr>
<td>PF</td>
<td>40</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>SPST</td>
<td>200</td>
<td>141</td>
<td>144</td>
</tr>
<tr>
<td>RT</td>
<td>113 (107)</td>
<td>82 (79)</td>
<td>35 (33)</td>
</tr>
</tbody>
</table>

Remark: Numbers in Parentheses exclude the 51–55 year old. We use this further restricted sample to evaluate RT. We do not evaluate PF for males in stratum 2 and 3 due to the small sample size.
1.1.2 Sample Sizes by Quarter

<table>
<thead>
<tr>
<th>Quarter of Inflows</th>
<th>Outflows</th>
<th>controls</th>
<th>share</th>
<th>trt later</th>
<th>alternative</th>
<th>alt share</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6135</td>
<td>621</td>
<td>12</td>
<td>119</td>
<td>5783</td>
<td>0.207</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5971</td>
<td>0.232</td>
</tr>
<tr>
<td>2</td>
<td>5350</td>
<td>806</td>
<td>25</td>
<td>135</td>
<td>5162</td>
<td>0.232</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5162</td>
<td>0.232</td>
</tr>
<tr>
<td>3</td>
<td>4356</td>
<td>582</td>
<td>28</td>
<td>206</td>
<td>3855</td>
<td>0.181</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4080</td>
<td>0.226</td>
</tr>
<tr>
<td>4</td>
<td>3498</td>
<td>443</td>
<td>23</td>
<td>168</td>
<td>3273</td>
<td>0.213</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3273</td>
<td>0.213</td>
</tr>
<tr>
<td>5</td>
<td>2830</td>
<td>408</td>
<td>21</td>
<td>157</td>
<td>2294</td>
<td>0.070</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2621</td>
<td>0.186</td>
</tr>
<tr>
<td>6</td>
<td>2213</td>
<td>241</td>
<td>10</td>
<td>115</td>
<td>1886</td>
<td>0.085</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2077</td>
<td>0.169</td>
</tr>
<tr>
<td>7</td>
<td>1836</td>
<td>155</td>
<td>10</td>
<td>99</td>
<td>1645</td>
<td>0.098</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1720</td>
<td>0.137</td>
</tr>
<tr>
<td>8</td>
<td>1565</td>
<td>127</td>
<td>7</td>
<td>64</td>
<td>1490</td>
<td>0.108</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1490</td>
<td>0.108</td>
</tr>
<tr>
<td>9+</td>
<td>1363</td>
<td>1202</td>
<td>9</td>
<td>147</td>
<td>mean</td>
<td>0.175</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mean</td>
<td>0.206</td>
</tr>
<tr>
<td>Men</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5911</td>
<td>1315</td>
<td>20</td>
<td>80</td>
<td>5558</td>
<td>0.087</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5754</td>
<td>0.118</td>
</tr>
<tr>
<td>2</td>
<td>4439</td>
<td>1300</td>
<td>20</td>
<td>120</td>
<td>4243</td>
<td>0.114</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4243</td>
<td>0.114</td>
</tr>
<tr>
<td>3</td>
<td>2943</td>
<td>729</td>
<td>10</td>
<td>84</td>
<td>2705</td>
<td>0.090</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2797</td>
<td>0.120</td>
</tr>
<tr>
<td>4</td>
<td>2068</td>
<td>402</td>
<td>5</td>
<td>57</td>
<td>1976</td>
<td>0.123</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1976</td>
<td>0.123</td>
</tr>
<tr>
<td>5</td>
<td>1574</td>
<td>272</td>
<td>4</td>
<td>52</td>
<td>1381</td>
<td>0.037</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1495</td>
<td>0.110</td>
</tr>
<tr>
<td>6</td>
<td>1223</td>
<td>176</td>
<td>2</td>
<td>34</td>
<td>1109</td>
<td>0.046</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1181</td>
<td>0.104</td>
</tr>
<tr>
<td>7</td>
<td>1005</td>
<td>102</td>
<td>3</td>
<td>29</td>
<td>933</td>
<td>0.055</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>970</td>
<td>0.091</td>
</tr>
<tr>
<td>8</td>
<td>868</td>
<td>68</td>
<td>5</td>
<td>29</td>
<td>831</td>
<td>0.061</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>831</td>
<td>0.061</td>
</tr>
<tr>
<td>9+</td>
<td>763</td>
<td>712</td>
<td>4</td>
<td>43</td>
<td>mean</td>
<td>0.088</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mean</td>
<td>0.113</td>
</tr>
</tbody>
</table>

Remark: The table shows quarter by quarter of elapsed unemployment duration the number of those who are still unemployed at the beginning of the quarter (inflows) and the number of those who during the quarter start a job (job) or a treatment (PF, SPST, RT). Controls are all those who are still unemployed at the beginning of the quarter but do not start a treatment during the stratum. The share of the controls who start a treatment during a later stratum is also given. An alternative definition of control persons (not pursued in the paper) would take as controls all those, who are still unemployed at the beginning of the quarter but do not start a treatment during the quarter. This would lead to a slightly higher share of controls who receive treatment later. The means are weighted means. The table considers the sample age 25–55 at the beginning of unemployment. The restricted version age 25–50 for RT is available upon request from the authors. The number for outflows in jobs in quarter 9+ include those, who never again start a job.
1.2 Variable Definitions

Table 1: Variable Definitions

<table>
<thead>
<tr>
<th>Label</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>aXXYY</td>
<td>Age at start of unemployment \geqXX and \leq YY</td>
</tr>
<tr>
<td>age</td>
<td>Age at start of unemployment</td>
</tr>
<tr>
<td>married</td>
<td>Married</td>
</tr>
<tr>
<td>qual_l</td>
<td>No vocational training degree or education information missing</td>
</tr>
<tr>
<td>qual_m</td>
<td>Vocational training degree</td>
</tr>
<tr>
<td>qual_h</td>
<td>University/College degree</td>
</tr>
<tr>
<td>BER1</td>
<td>Apprentice</td>
</tr>
<tr>
<td>BER2</td>
<td>Blue Collar Worker</td>
</tr>
<tr>
<td>BER3</td>
<td>White Collar Worker</td>
</tr>
<tr>
<td>BER4</td>
<td>Worker at home with low hours or BER missing</td>
</tr>
<tr>
<td>BER5</td>
<td>Part–time working</td>
</tr>
<tr>
<td>pearn</td>
<td>Daily earnings \geq 15 Euro per day in 1995 Euro</td>
</tr>
<tr>
<td>earnlow</td>
<td>Daily earnings $<$ 15 Euro per day in 1995 Euro</td>
</tr>
<tr>
<td>earnncens</td>
<td>Earnings censored at social security taxation threshold</td>
</tr>
<tr>
<td>earn</td>
<td>Daily earnings</td>
</tr>
<tr>
<td>logearn</td>
<td>log(earn) if pearn=1 and earnncens=0, otherwise zero</td>
</tr>
<tr>
<td>industry1</td>
<td>Agriculture</td>
</tr>
<tr>
<td>industry2</td>
<td>Basic materials</td>
</tr>
<tr>
<td>industry3</td>
<td>Metal, vehicles, electronics</td>
</tr>
<tr>
<td>industry4</td>
<td>Light industry</td>
</tr>
<tr>
<td>industry5</td>
<td>Construction</td>
</tr>
<tr>
<td>industry6</td>
<td>Production oriented services, trade, banking</td>
</tr>
<tr>
<td>industry7</td>
<td>Consumer oriented services, organization and social services</td>
</tr>
<tr>
<td>frmsize1</td>
<td>Firm Size (employment) missing or \leq 10</td>
</tr>
<tr>
<td>frmsize2</td>
<td>Firm Size (employment) $>$ 10 and \leq 200</td>
</tr>
<tr>
<td>frmsize3</td>
<td>Firm Size (employment) $>$ 200 and \leq 500</td>
</tr>
</tbody>
</table>

<continued on next page>
Table 1: Variable Definitions <continued>

<table>
<thead>
<tr>
<th>Label</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>frmsize4</td>
<td>Firm Size (employment) > 500</td>
</tr>
</tbody>
</table>

Employment and Program History

<table>
<thead>
<tr>
<th>preexM</th>
<th>Employed M (M=6, 12) month before unemployment starts</th>
</tr>
</thead>
</table>
| preex12cum| Number of months employed in the last 12 months before
unemployment starts, standardized |
| pretx1 | Participation in any ALMP program reported in our data in
the year before unemployment starts |

Regional Information

<table>
<thead>
<tr>
<th>state1</th>
<th>Mecklenburg-Vorpommern</th>
</tr>
</thead>
<tbody>
<tr>
<td>state2</td>
<td>Brandenburg</td>
</tr>
<tr>
<td>state3</td>
<td>Sachsen-Anhalt</td>
</tr>
<tr>
<td>state4</td>
<td>Sachsen</td>
</tr>
<tr>
<td>state5</td>
<td>Thüringen</td>
</tr>
<tr>
<td>popdens</td>
<td>population density (standardized)</td>
</tr>
</tbody>
</table>

Calendar Time of Entry into Unemployment

| uentry | First unemployment month (months counted from January 1993) |

Interaction of Variables / Functional Form

<table>
<thead>
<tr>
<th>.sq</th>
<th>squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>interaction</td>
</tr>
</tbody>
</table>

All variables are defined at the time of entry into unemployment and constant during the unemployment spell.

1.3 Summary Statistics

The following six tables document the mean values of the variables in the three strata for women and men. The means are shown for the dynamic control group and the participants in PF, SPST and RT, respectively. Since we restrict the age for the evaluation of RT to lie between 25 and 50, we show the means for the dynamic control group also for this more restricted group and for RT only for this age group.
Table 2: Women Stratum 1

<table>
<thead>
<tr>
<th>Variable</th>
<th>control</th>
<th>control 25–50</th>
<th>PF</th>
<th>SPST</th>
<th>RT 25–50</th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td>40.088</td>
<td>36.886</td>
<td>40.757</td>
<td>39.819</td>
<td>33.689</td>
</tr>
<tr>
<td>married</td>
<td>.59</td>
<td>.576</td>
<td>.514</td>
<td>.61</td>
<td>.738</td>
</tr>
<tr>
<td>qual l</td>
<td>.108</td>
<td>.098</td>
<td>.081</td>
<td>.039</td>
<td>.066</td>
</tr>
<tr>
<td>qual m</td>
<td>.843</td>
<td>.851</td>
<td>.892</td>
<td>.89</td>
<td>.869</td>
</tr>
<tr>
<td>qual h</td>
<td>.049</td>
<td>.05</td>
<td>.027</td>
<td>.071</td>
<td>.066</td>
</tr>
<tr>
<td>BER1</td>
<td>.003</td>
<td>.004</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BER2</td>
<td>.428</td>
<td>.425</td>
<td>.432</td>
<td>.252</td>
<td>.443</td>
</tr>
<tr>
<td>BER3</td>
<td>.391</td>
<td>.399</td>
<td>.405</td>
<td>.535</td>
<td>.393</td>
</tr>
<tr>
<td>BER4</td>
<td>.002</td>
<td>.002</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BER5</td>
<td>.176</td>
<td>.171</td>
<td>.162</td>
<td>.213</td>
<td>.164</td>
</tr>
<tr>
<td>pearn</td>
<td>.966</td>
<td>.967</td>
<td>.973</td>
<td>.996</td>
<td>1</td>
</tr>
<tr>
<td>earncens</td>
<td>.004</td>
<td>.004</td>
<td>0</td>
<td>.004</td>
<td>0</td>
</tr>
<tr>
<td>industry1</td>
<td>.066</td>
<td>.064</td>
<td>.027</td>
<td>.047</td>
<td>.016</td>
</tr>
<tr>
<td>industry2</td>
<td>.047</td>
<td>.044</td>
<td>.027</td>
<td>.043</td>
<td>.115</td>
</tr>
<tr>
<td>industry3</td>
<td>.064</td>
<td>.064</td>
<td>.189</td>
<td>.075</td>
<td>.066</td>
</tr>
<tr>
<td>industry4</td>
<td>.074</td>
<td>.072</td>
<td>.081</td>
<td>.071</td>
<td>.033</td>
</tr>
<tr>
<td>industry5</td>
<td>.036</td>
<td>.038</td>
<td>.081</td>
<td>.035</td>
<td>.049</td>
</tr>
<tr>
<td>industry6</td>
<td>.264</td>
<td>.269</td>
<td>.162</td>
<td>.303</td>
<td>.18</td>
</tr>
<tr>
<td>industry7</td>
<td>.45</td>
<td>.45</td>
<td>.432</td>
<td>.425</td>
<td>.541</td>
</tr>
<tr>
<td>frmsize1</td>
<td>.229</td>
<td>.235</td>
<td>.081</td>
<td>.193</td>
<td>.18</td>
</tr>
<tr>
<td>frmsize2</td>
<td>.447</td>
<td>.447</td>
<td>.676</td>
<td>.433</td>
<td>.344</td>
</tr>
<tr>
<td>frmsize3</td>
<td>.152</td>
<td>.148</td>
<td>.189</td>
<td>.177</td>
<td>.213</td>
</tr>
<tr>
<td>frmsize4</td>
<td>.173</td>
<td>.169</td>
<td>.054</td>
<td>.197</td>
<td>.262</td>
</tr>
<tr>
<td>preex6</td>
<td>.842</td>
<td>.835</td>
<td>.784</td>
<td>.846</td>
<td>.934</td>
</tr>
<tr>
<td>preex12</td>
<td>.764</td>
<td>.747</td>
<td>.757</td>
<td>.827</td>
<td>.836</td>
</tr>
<tr>
<td>pretx1</td>
<td>.077</td>
<td>.083</td>
<td>.054</td>
<td>.031</td>
<td>.066</td>
</tr>
<tr>
<td>state1</td>
<td>.139</td>
<td>.144</td>
<td>.081</td>
<td>.154</td>
<td>.131</td>
</tr>
<tr>
<td>state2</td>
<td>.167</td>
<td>.169</td>
<td>0</td>
<td>.118</td>
<td>.246</td>
</tr>
<tr>
<td>state3</td>
<td>.209</td>
<td>.207</td>
<td>.162</td>
<td>.205</td>
<td>.115</td>
</tr>
<tr>
<td>state4</td>
<td>.304</td>
<td>.299</td>
<td>.216</td>
<td>.362</td>
<td>.377</td>
</tr>
</tbody>
</table>

Continued on next page...
Table 2 continued

<table>
<thead>
<tr>
<th>Variable</th>
<th>control</th>
<th>control 25–50</th>
<th>SPST</th>
<th>RT 25–50</th>
</tr>
</thead>
<tbody>
<tr>
<td>state5</td>
<td>.18</td>
<td>.179</td>
<td>.541</td>
<td>.161</td>
</tr>
<tr>
<td>popdens</td>
<td>468.023</td>
<td>463.781</td>
<td>422.692</td>
<td>544.084</td>
</tr>
<tr>
<td>uentry</td>
<td>10.721</td>
<td>10.847</td>
<td>8.892</td>
<td>13</td>
</tr>
<tr>
<td>N</td>
<td>5783</td>
<td>4652</td>
<td>37</td>
<td>254</td>
</tr>
</tbody>
</table>

Table 3: Women Stratum 2

<table>
<thead>
<tr>
<th>Variable</th>
<th>control</th>
<th>control 25–50</th>
<th>SPST</th>
<th>RT 25–50</th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td>40.777</td>
<td>37.183</td>
<td>41.176</td>
<td>38.623</td>
</tr>
<tr>
<td>married</td>
<td>.587</td>
<td>.568</td>
<td>.667</td>
<td>.61</td>
</tr>
<tr>
<td>qual l</td>
<td>.133</td>
<td>.122</td>
<td>.039</td>
<td>.078</td>
</tr>
<tr>
<td>qual m</td>
<td>.828</td>
<td>.838</td>
<td>.863</td>
<td>.834</td>
</tr>
<tr>
<td>qual h</td>
<td>.039</td>
<td>.04</td>
<td>.098</td>
<td>.088</td>
</tr>
<tr>
<td>BER1</td>
<td>.003</td>
<td>.003</td>
<td>0</td>
<td>.005</td>
</tr>
<tr>
<td>BER2</td>
<td>.432</td>
<td>.433</td>
<td>.353</td>
<td>.294</td>
</tr>
<tr>
<td>BER3</td>
<td>.373</td>
<td>.378</td>
<td>.49</td>
<td>.559</td>
</tr>
<tr>
<td>BER4</td>
<td>.002</td>
<td>.002</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BER5</td>
<td>.191</td>
<td>.185</td>
<td>.157</td>
<td>.142</td>
</tr>
<tr>
<td>pearn</td>
<td>.963</td>
<td>.963</td>
<td>1</td>
<td>.979</td>
</tr>
<tr>
<td>earncens</td>
<td>.003</td>
<td>.003</td>
<td>.02</td>
<td>.003</td>
</tr>
<tr>
<td>logearn</td>
<td>3.427</td>
<td>3.419</td>
<td>3.562</td>
<td>3.593</td>
</tr>
<tr>
<td>industry1</td>
<td>.058</td>
<td>.058</td>
<td>0</td>
<td>.037</td>
</tr>
<tr>
<td>industry2</td>
<td>.051</td>
<td>.048</td>
<td>.078</td>
<td>.029</td>
</tr>
<tr>
<td>industry3</td>
<td>.061</td>
<td>.058</td>
<td>.098</td>
<td>.091</td>
</tr>
<tr>
<td>industry4</td>
<td>.073</td>
<td>.073</td>
<td>.02</td>
<td>.056</td>
</tr>
<tr>
<td>industry5</td>
<td>.038</td>
<td>.041</td>
<td>0</td>
<td>.027</td>
</tr>
<tr>
<td>industry6</td>
<td>.261</td>
<td>.263</td>
<td>.294</td>
<td>.342</td>
</tr>
<tr>
<td>industry7</td>
<td>.457</td>
<td>.459</td>
<td>.51</td>
<td>.417</td>
</tr>
<tr>
<td>frmsize1</td>
<td>.222</td>
<td>.228</td>
<td>.176</td>
<td>.203</td>
</tr>
<tr>
<td>frmsize2</td>
<td>.439</td>
<td>.439</td>
<td>.353</td>
<td>.428</td>
</tr>
<tr>
<td>frmsize3</td>
<td>.156</td>
<td>.154</td>
<td>.235</td>
<td>.144</td>
</tr>
</tbody>
</table>

Continued on next page...
Table 3 continued

<table>
<thead>
<tr>
<th>Variable</th>
<th>control</th>
<th>control 25–50</th>
<th>PF</th>
<th>SPST</th>
<th>RT 25–50</th>
</tr>
</thead>
<tbody>
<tr>
<td>frmsize4</td>
<td>.182</td>
<td>.179</td>
<td>.235</td>
<td>.225</td>
<td>.227</td>
</tr>
<tr>
<td>preex6</td>
<td>.859</td>
<td>.85</td>
<td>.922</td>
<td>.832</td>
<td>.92</td>
</tr>
<tr>
<td>preex12</td>
<td>.793</td>
<td>.77</td>
<td>.784</td>
<td>.786</td>
<td>.867</td>
</tr>
<tr>
<td>preex12cum</td>
<td>10.374</td>
<td>10.242</td>
<td>10.843</td>
<td>10.257</td>
<td>11.027</td>
</tr>
<tr>
<td>pretx1</td>
<td>.072</td>
<td>.079</td>
<td>.059</td>
<td>.053</td>
<td>.08</td>
</tr>
<tr>
<td>state1</td>
<td>.135</td>
<td>.138</td>
<td>.157</td>
<td>.139</td>
<td>.227</td>
</tr>
<tr>
<td>state2</td>
<td>.172</td>
<td>.174</td>
<td>.02</td>
<td>.155</td>
<td>.147</td>
</tr>
<tr>
<td>state3</td>
<td>.216</td>
<td>.215</td>
<td>.333</td>
<td>.233</td>
<td>.147</td>
</tr>
<tr>
<td>state4</td>
<td>.292</td>
<td>.288</td>
<td>.275</td>
<td>.329</td>
<td>.36</td>
</tr>
<tr>
<td>state5</td>
<td>.185</td>
<td>.186</td>
<td>.216</td>
<td>.144</td>
<td>.12</td>
</tr>
<tr>
<td>popdens</td>
<td>466.479</td>
<td>461.806</td>
<td>520.108</td>
<td>561.464</td>
<td>392.724</td>
</tr>
<tr>
<td>N</td>
<td>3855</td>
<td>2996</td>
<td>51</td>
<td>374</td>
<td>75</td>
</tr>
</tbody>
</table>

Table 4: Women Stratum 3

<table>
<thead>
<tr>
<th>Variable</th>
<th>control</th>
<th>control 25–50</th>
<th>PF</th>
<th>SPST</th>
<th>RT 25–50</th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td>41.668</td>
<td>37.309</td>
<td>43.604</td>
<td>40.609</td>
<td>33.453</td>
</tr>
<tr>
<td>married</td>
<td>.589</td>
<td>.57</td>
<td>.542</td>
<td>.591</td>
<td>.547</td>
</tr>
<tr>
<td>qual l</td>
<td>.159</td>
<td>.147</td>
<td>.083</td>
<td>.099</td>
<td>.075</td>
</tr>
<tr>
<td>qual m</td>
<td>.805</td>
<td>.814</td>
<td>.896</td>
<td>.857</td>
<td>.906</td>
</tr>
<tr>
<td>qual h</td>
<td>.036</td>
<td>.038</td>
<td>.021</td>
<td>.044</td>
<td>.019</td>
</tr>
<tr>
<td>BER1</td>
<td>.003</td>
<td>.003</td>
<td>.021</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BER2</td>
<td>.449</td>
<td>.454</td>
<td>.292</td>
<td>.368</td>
<td>.528</td>
</tr>
<tr>
<td>BER3</td>
<td>.341</td>
<td>.342</td>
<td>.583</td>
<td>.446</td>
<td>.434</td>
</tr>
<tr>
<td>BER4</td>
<td>.001</td>
<td>.002</td>
<td>0</td>
<td>.002</td>
<td>0</td>
</tr>
<tr>
<td>BER5</td>
<td>.206</td>
<td>.199</td>
<td>.104</td>
<td>.184</td>
<td>.038</td>
</tr>
<tr>
<td>pearn</td>
<td>.959</td>
<td>.959</td>
<td>.938</td>
<td>.982</td>
<td>1</td>
</tr>
<tr>
<td>earn cens</td>
<td>.004</td>
<td>.003</td>
<td>0</td>
<td>.002</td>
<td>0</td>
</tr>
<tr>
<td>logearn</td>
<td>3.395</td>
<td>3.388</td>
<td>3.452</td>
<td>3.562</td>
<td>3.674</td>
</tr>
<tr>
<td>industry1</td>
<td>.06</td>
<td>.06</td>
<td>.042</td>
<td>.048</td>
<td>.038</td>
</tr>
</tbody>
</table>

Continued on next page...
... *table 4 continued*

<table>
<thead>
<tr>
<th>Variable</th>
<th>control</th>
<th>control 25–50</th>
<th>PF</th>
<th>SPST</th>
<th>RT 25–50</th>
</tr>
</thead>
<tbody>
<tr>
<td>industry2</td>
<td>.051</td>
<td>.046</td>
<td>.125</td>
<td>.064</td>
<td>.075</td>
</tr>
<tr>
<td>industry3</td>
<td>.063</td>
<td>.059</td>
<td>.104</td>
<td>.057</td>
<td>.094</td>
</tr>
<tr>
<td>industry4</td>
<td>.075</td>
<td>.073</td>
<td>.042</td>
<td>.094</td>
<td>.075</td>
</tr>
<tr>
<td>industry5</td>
<td>.041</td>
<td>.045</td>
<td>0</td>
<td>.037</td>
<td>.038</td>
</tr>
<tr>
<td>industry6</td>
<td>.246</td>
<td>.247</td>
<td>.313</td>
<td>.308</td>
<td>.189</td>
</tr>
<tr>
<td>industry7</td>
<td>.464</td>
<td>.47</td>
<td>.375</td>
<td>.391</td>
<td>.491</td>
</tr>
<tr>
<td>frmsize1</td>
<td>.221</td>
<td>.23</td>
<td>.188</td>
<td>.152</td>
<td>.075</td>
</tr>
<tr>
<td>frmsize2</td>
<td>.436</td>
<td>.437</td>
<td>.438</td>
<td>.453</td>
<td>.396</td>
</tr>
<tr>
<td>frmsize3</td>
<td>.158</td>
<td>.151</td>
<td>.063</td>
<td>.182</td>
<td>.17</td>
</tr>
<tr>
<td>frmsize4</td>
<td>.185</td>
<td>.181</td>
<td>.313</td>
<td>.214</td>
<td>.358</td>
</tr>
<tr>
<td>preex6</td>
<td>.866</td>
<td>.855</td>
<td>.917</td>
<td>.906</td>
<td>.887</td>
</tr>
<tr>
<td>preex12</td>
<td>.804</td>
<td>.774</td>
<td>.813</td>
<td>.853</td>
<td>.849</td>
</tr>
<tr>
<td>pretx1</td>
<td>.06</td>
<td>.068</td>
<td>.083</td>
<td>.078</td>
<td>.057</td>
</tr>
<tr>
<td>state1</td>
<td>.121</td>
<td>.121</td>
<td>.229</td>
<td>.103</td>
<td>.189</td>
</tr>
<tr>
<td>state2</td>
<td>.167</td>
<td>.168</td>
<td>.021</td>
<td>.2</td>
<td>.094</td>
</tr>
<tr>
<td>state3</td>
<td>.228</td>
<td>.228</td>
<td>.229</td>
<td>.172</td>
<td>.208</td>
</tr>
<tr>
<td>state4</td>
<td>.289</td>
<td>.284</td>
<td>.333</td>
<td>.368</td>
<td>.226</td>
</tr>
<tr>
<td>state5</td>
<td>.195</td>
<td>.199</td>
<td>.188</td>
<td>.156</td>
<td>.283</td>
</tr>
<tr>
<td>popdens</td>
<td>453.54</td>
<td>451.059</td>
<td>642.06</td>
<td>559.151</td>
<td>534.315</td>
</tr>
<tr>
<td>N</td>
<td>2294</td>
<td>1671</td>
<td>48</td>
<td>435</td>
<td>53</td>
</tr>
</tbody>
</table>

Table 5: Men Stratum 1

<table>
<thead>
<tr>
<th>Variable</th>
<th>control</th>
<th>control 25–50</th>
<th>PF</th>
<th>SPST</th>
<th>RT 25–50</th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td>40.124</td>
<td>36.84</td>
<td>36.975</td>
<td>40.035</td>
<td>33.449</td>
</tr>
<tr>
<td>married</td>
<td>.466</td>
<td>.435</td>
<td>.475</td>
<td>.56</td>
<td>.421</td>
</tr>
<tr>
<td>qual l</td>
<td>.094</td>
<td>.089</td>
<td>.125</td>
<td>.06</td>
<td>.075</td>
</tr>
<tr>
<td>qual m</td>
<td>.842</td>
<td>.851</td>
<td>.825</td>
<td>.75</td>
<td>.897</td>
</tr>
<tr>
<td>qual h</td>
<td>.063</td>
<td>.059</td>
<td>.05</td>
<td>.19</td>
<td>.028</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Variable</th>
<th>control</th>
<th>control 25–50</th>
<th>PF</th>
<th>SPST</th>
<th>RT 25–50</th>
</tr>
</thead>
<tbody>
<tr>
<td>BER1</td>
<td>.001</td>
<td>.002</td>
<td>.025</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BER2</td>
<td>.794</td>
<td>.804</td>
<td>.85</td>
<td>.6</td>
<td>.86</td>
</tr>
<tr>
<td>BER3</td>
<td>.167</td>
<td>.161</td>
<td>.075</td>
<td>.34</td>
<td>.112</td>
</tr>
<tr>
<td>BER4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>.005</td>
<td>0</td>
</tr>
<tr>
<td>BER5</td>
<td>.037</td>
<td>.033</td>
<td>.05</td>
<td>.055</td>
<td>.028</td>
</tr>
<tr>
<td>pearn</td>
<td>.991</td>
<td>.991</td>
<td>1</td>
<td>.995</td>
<td>.991</td>
</tr>
<tr>
<td>earncens</td>
<td>.015</td>
<td>.014</td>
<td>0</td>
<td>.03</td>
<td>0</td>
</tr>
<tr>
<td>logearn</td>
<td>3.647</td>
<td>3.649</td>
<td>3.72</td>
<td>3.711</td>
<td>3.727</td>
</tr>
<tr>
<td>industry1</td>
<td>.079</td>
<td>.074</td>
<td>.05</td>
<td>.05</td>
<td>.084</td>
</tr>
<tr>
<td>industry2</td>
<td>.072</td>
<td>.075</td>
<td>.075</td>
<td>.115</td>
<td>.103</td>
</tr>
<tr>
<td>industry3</td>
<td>.116</td>
<td>.113</td>
<td>.1</td>
<td>.165</td>
<td>.196</td>
</tr>
<tr>
<td>industry4</td>
<td>.056</td>
<td>.056</td>
<td>.05</td>
<td>.05</td>
<td>.065</td>
</tr>
<tr>
<td>industry5</td>
<td>.207</td>
<td>.227</td>
<td>.175</td>
<td>.115</td>
<td>.121</td>
</tr>
<tr>
<td>industry6</td>
<td>.221</td>
<td>.234</td>
<td>.15</td>
<td>.29</td>
<td>.262</td>
</tr>
<tr>
<td>industry7</td>
<td>.248</td>
<td>.222</td>
<td>.4</td>
<td>.215</td>
<td>.168</td>
</tr>
<tr>
<td>frmsize1</td>
<td>.255</td>
<td>.27</td>
<td>.175</td>
<td>.19</td>
<td>.131</td>
</tr>
<tr>
<td>frmsize2</td>
<td>.501</td>
<td>.503</td>
<td>.425</td>
<td>.49</td>
<td>.533</td>
</tr>
<tr>
<td>frmsize3</td>
<td>.12</td>
<td>.109</td>
<td>.1</td>
<td>.115</td>
<td>.121</td>
</tr>
<tr>
<td>frmsize4</td>
<td>.124</td>
<td>.118</td>
<td>.3</td>
<td>.205</td>
<td>.215</td>
</tr>
<tr>
<td>preex6</td>
<td>.845</td>
<td>.835</td>
<td>.875</td>
<td>.845</td>
<td>.869</td>
</tr>
<tr>
<td>preex12</td>
<td>.776</td>
<td>.761</td>
<td>.75</td>
<td>.87</td>
<td>.776</td>
</tr>
<tr>
<td>preex12cum</td>
<td>10.223</td>
<td>10.097</td>
<td>10.175</td>
<td>10.56</td>
<td>10.533</td>
</tr>
<tr>
<td>pretx1</td>
<td>.064</td>
<td>.069</td>
<td>.025</td>
<td>.03</td>
<td>.075</td>
</tr>
<tr>
<td>state1</td>
<td>.14</td>
<td>.141</td>
<td>.2</td>
<td>.2</td>
<td>.168</td>
</tr>
<tr>
<td>state2</td>
<td>.147</td>
<td>.152</td>
<td>.05</td>
<td>.13</td>
<td>.14</td>
</tr>
<tr>
<td>state3</td>
<td>.209</td>
<td>.213</td>
<td>.4</td>
<td>.165</td>
<td>.243</td>
</tr>
<tr>
<td>state4</td>
<td>.323</td>
<td>.319</td>
<td>.15</td>
<td>.35</td>
<td>.346</td>
</tr>
<tr>
<td>state5</td>
<td>.18</td>
<td>.175</td>
<td>.2</td>
<td>.155</td>
<td>.103</td>
</tr>
<tr>
<td>popdens</td>
<td>460.115</td>
<td>463.21</td>
<td>340.144</td>
<td>604.944</td>
<td>499.402</td>
</tr>
<tr>
<td>uentry</td>
<td>10.6</td>
<td>10.657</td>
<td>9.425</td>
<td>12.01</td>
<td>10.533</td>
</tr>
<tr>
<td>N</td>
<td>5558</td>
<td>4444</td>
<td>40</td>
<td>200</td>
<td>107</td>
</tr>
</tbody>
</table>
Table 6: Men Stratum 2

<table>
<thead>
<tr>
<th>Variable</th>
<th>control</th>
<th>control 25–50</th>
<th>PF</th>
<th>SPST</th>
<th>RT 25–50</th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td>41.316</td>
<td>37.473</td>
<td>38.933</td>
<td>40.099</td>
<td>34.443</td>
</tr>
<tr>
<td>married</td>
<td>.44</td>
<td>.396</td>
<td>.333</td>
<td>.44</td>
<td>.405</td>
</tr>
<tr>
<td>qual l</td>
<td>.12</td>
<td>.118</td>
<td>.133</td>
<td>.078</td>
<td>.114</td>
</tr>
<tr>
<td>qual m</td>
<td>.805</td>
<td>.812</td>
<td>.867</td>
<td>.801</td>
<td>.797</td>
</tr>
<tr>
<td>qual h</td>
<td>.075</td>
<td>.07</td>
<td>0</td>
<td>.121</td>
<td>.089</td>
</tr>
<tr>
<td>BER1</td>
<td>.002</td>
<td>.002</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BER2</td>
<td>.761</td>
<td>.771</td>
<td>1</td>
<td>.645</td>
<td>.823</td>
</tr>
<tr>
<td>BER3</td>
<td>.197</td>
<td>.19</td>
<td>0</td>
<td>.319</td>
<td>.165</td>
</tr>
<tr>
<td>BER4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BER5</td>
<td>.04</td>
<td>.037</td>
<td>0</td>
<td>.035</td>
<td>.013</td>
</tr>
<tr>
<td>pearn</td>
<td>.988</td>
<td>.988</td>
<td>1</td>
<td>.993</td>
<td>1</td>
</tr>
<tr>
<td>earncens</td>
<td>.019</td>
<td>.016</td>
<td>0</td>
<td>.021</td>
<td>.013</td>
</tr>
<tr>
<td>logearn</td>
<td>3.61</td>
<td>3.615</td>
<td>3.67</td>
<td>3.666</td>
<td>3.715</td>
</tr>
<tr>
<td>industry1</td>
<td>.06</td>
<td>.053</td>
<td>.2</td>
<td>.035</td>
<td>.051</td>
</tr>
<tr>
<td>industry2</td>
<td>.078</td>
<td>.081</td>
<td>0</td>
<td>.057</td>
<td>.089</td>
</tr>
<tr>
<td>industry3</td>
<td>.115</td>
<td>.107</td>
<td>.067</td>
<td>.128</td>
<td>.165</td>
</tr>
<tr>
<td>industry4</td>
<td>.053</td>
<td>.055</td>
<td>.133</td>
<td>.043</td>
<td>.076</td>
</tr>
<tr>
<td>industry5</td>
<td>.174</td>
<td>.195</td>
<td>.133</td>
<td>.149</td>
<td>.139</td>
</tr>
<tr>
<td>industry6</td>
<td>.23</td>
<td>.242</td>
<td>.133</td>
<td>.312</td>
<td>.241</td>
</tr>
<tr>
<td>industry7</td>
<td>.29</td>
<td>.266</td>
<td>.333</td>
<td>.277</td>
<td>.241</td>
</tr>
<tr>
<td>frmsize1</td>
<td>.229</td>
<td>.247</td>
<td>.133</td>
<td>.199</td>
<td>.19</td>
</tr>
<tr>
<td>frmsize2</td>
<td>.487</td>
<td>.489</td>
<td>.6</td>
<td>.447</td>
<td>.57</td>
</tr>
<tr>
<td>frmsize3</td>
<td>.131</td>
<td>.118</td>
<td>.2</td>
<td>.163</td>
<td>.139</td>
</tr>
<tr>
<td>frmsize4</td>
<td>.153</td>
<td>.146</td>
<td>.067</td>
<td>.191</td>
<td>.101</td>
</tr>
<tr>
<td>preex6</td>
<td>.839</td>
<td>.82</td>
<td>.867</td>
<td>.844</td>
<td>.886</td>
</tr>
<tr>
<td>preex12</td>
<td>.783</td>
<td>.761</td>
<td>.733</td>
<td>.787</td>
<td>.861</td>
</tr>
<tr>
<td>preex12cum</td>
<td>10.216</td>
<td>10.005</td>
<td>10.067</td>
<td>10.277</td>
<td>10.772</td>
</tr>
<tr>
<td>pretx1</td>
<td>.062</td>
<td>.07</td>
<td>.067</td>
<td>.043</td>
<td>.038</td>
</tr>
<tr>
<td>state1</td>
<td>.134</td>
<td>.135</td>
<td>.333</td>
<td>.113</td>
<td>.19</td>
</tr>
<tr>
<td>state2</td>
<td>.152</td>
<td>.157</td>
<td>0</td>
<td>.106</td>
<td>.114</td>
</tr>
<tr>
<td>state3</td>
<td>.232</td>
<td>.236</td>
<td>.333</td>
<td>.284</td>
<td>.177</td>
</tr>
<tr>
<td>state4</td>
<td>.308</td>
<td>.304</td>
<td>.133</td>
<td>.355</td>
<td>.304</td>
</tr>
</tbody>
</table>

Continued on next page...
Table 6 continued

<table>
<thead>
<tr>
<th>Variable</th>
<th>control</th>
<th>control 25–50</th>
<th>PF</th>
<th>SPST</th>
<th>RT 25–50</th>
</tr>
</thead>
<tbody>
<tr>
<td>state5</td>
<td>.174</td>
<td>.167</td>
<td>.2</td>
<td>.142</td>
<td>.215</td>
</tr>
<tr>
<td>popdens</td>
<td>487.763</td>
<td>491.47</td>
<td>646.669</td>
<td>410.726</td>
<td></td>
</tr>
<tr>
<td>uentry</td>
<td>10.461</td>
<td>10.605</td>
<td>13.376</td>
<td>9.405</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>2705</td>
<td>2046</td>
<td>15</td>
<td>141</td>
<td>79</td>
</tr>
</tbody>
</table>

Table 7: Men Stratum 3

<table>
<thead>
<tr>
<th>Variable</th>
<th>control</th>
<th>control 25–50</th>
<th>PF</th>
<th>SPST</th>
<th>RT 25–50</th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td>42.142</td>
<td>37.872</td>
<td>41.929</td>
<td>42.201</td>
<td>34.364</td>
</tr>
<tr>
<td>married</td>
<td>.433</td>
<td>.391</td>
<td>.5</td>
<td>.41</td>
<td>.333</td>
</tr>
<tr>
<td>qual l</td>
<td>.125</td>
<td>.123</td>
<td>.071</td>
<td>.153</td>
<td>.242</td>
</tr>
<tr>
<td>qual m</td>
<td>.791</td>
<td>.794</td>
<td>.929</td>
<td>.674</td>
<td>.727</td>
</tr>
<tr>
<td>qual h</td>
<td>.084</td>
<td>.082</td>
<td>0</td>
<td>.174</td>
<td>.03</td>
</tr>
<tr>
<td>BER1</td>
<td>.001</td>
<td>.002</td>
<td>0</td>
<td>.007</td>
<td>0</td>
</tr>
<tr>
<td>BER2</td>
<td>.736</td>
<td>.741</td>
<td>.714</td>
<td>.611</td>
<td>.788</td>
</tr>
<tr>
<td>BER3</td>
<td>.218</td>
<td>.217</td>
<td>.286</td>
<td>.333</td>
<td>.182</td>
</tr>
<tr>
<td>BER4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BER5</td>
<td>.045</td>
<td>.04</td>
<td>0</td>
<td>.049</td>
<td>.03</td>
</tr>
<tr>
<td>pearn</td>
<td>.986</td>
<td>.987</td>
<td>1</td>
<td>.986</td>
<td>.97</td>
</tr>
<tr>
<td>earncens</td>
<td>.025</td>
<td>.022</td>
<td>0</td>
<td>.056</td>
<td>0</td>
</tr>
<tr>
<td>logearn</td>
<td>3.572</td>
<td>3.579</td>
<td>3.651</td>
<td>3.503</td>
<td>3.669</td>
</tr>
<tr>
<td>industry1</td>
<td>.056</td>
<td>.045</td>
<td>.071</td>
<td>.021</td>
<td>.03</td>
</tr>
<tr>
<td>industry2</td>
<td>.078</td>
<td>.077</td>
<td>.071</td>
<td>.069</td>
<td>.091</td>
</tr>
<tr>
<td>industry3</td>
<td>.122</td>
<td>.113</td>
<td>.143</td>
<td>.125</td>
<td>.091</td>
</tr>
<tr>
<td>industry4</td>
<td>.053</td>
<td>.06</td>
<td>.071</td>
<td>.035</td>
<td>.091</td>
</tr>
<tr>
<td>industry5</td>
<td>.152</td>
<td>.165</td>
<td>.071</td>
<td>.167</td>
<td>.182</td>
</tr>
<tr>
<td>industry6</td>
<td>.227</td>
<td>.237</td>
<td>.357</td>
<td>.236</td>
<td>.273</td>
</tr>
<tr>
<td>industry7</td>
<td>.311</td>
<td>.302</td>
<td>.214</td>
<td>.347</td>
<td>.242</td>
</tr>
<tr>
<td>frmsize1</td>
<td>.236</td>
<td>.259</td>
<td>.429</td>
<td>.16</td>
<td>.182</td>
</tr>
<tr>
<td>frmsize2</td>
<td>.461</td>
<td>.458</td>
<td>.5</td>
<td>.528</td>
<td>.455</td>
</tr>
<tr>
<td>frmsize3</td>
<td>.133</td>
<td>.116</td>
<td>0</td>
<td>.125</td>
<td>.182</td>
</tr>
</tbody>
</table>

Continued on next page...
Table 7 continued

<table>
<thead>
<tr>
<th>Variable</th>
<th>control</th>
<th>control 25–50</th>
<th>PF</th>
<th>SPST</th>
<th>RT 25–50</th>
</tr>
</thead>
<tbody>
<tr>
<td>frmsize4</td>
<td>.169</td>
<td>.166</td>
<td>.071</td>
<td>.188</td>
<td>.182</td>
</tr>
<tr>
<td>preex6</td>
<td>.857</td>
<td>.839</td>
<td>.857</td>
<td>.861</td>
<td>.788</td>
</tr>
<tr>
<td>preex12</td>
<td>.789</td>
<td>.767</td>
<td>.786</td>
<td>.819</td>
<td>.788</td>
</tr>
<tr>
<td>pretx1</td>
<td>.052</td>
<td>.055</td>
<td>.071</td>
<td>.063</td>
<td>.121</td>
</tr>
<tr>
<td>state1</td>
<td>.127</td>
<td>.128</td>
<td>.357</td>
<td>.146</td>
<td>.394</td>
</tr>
<tr>
<td>state2</td>
<td>.165</td>
<td>.176</td>
<td>0</td>
<td>.153</td>
<td>.061</td>
</tr>
<tr>
<td>state3</td>
<td>.217</td>
<td>.221</td>
<td>.214</td>
<td>.229</td>
<td>.333</td>
</tr>
<tr>
<td>state4</td>
<td>.322</td>
<td>.312</td>
<td>.071</td>
<td>.313</td>
<td>.091</td>
</tr>
<tr>
<td>state5</td>
<td>.169</td>
<td>.163</td>
<td>.357</td>
<td>.16</td>
<td>.121</td>
</tr>
<tr>
<td>popdens</td>
<td>508.681</td>
<td>505.011</td>
<td>311.301</td>
<td>555.184</td>
<td>460.436</td>
</tr>
<tr>
<td>uentry</td>
<td>10.345</td>
<td>10.395</td>
<td>10.5</td>
<td>10.833</td>
<td>8.758</td>
</tr>
<tr>
<td>N</td>
<td>1381</td>
<td>997</td>
<td>14</td>
<td>144</td>
<td>33</td>
</tr>
</tbody>
</table>

1.4 Results of Propensity Score Estimations and Balancing Tests

Remark: The propensity score tables show the estimated coefficients of the probit regressions of the conditional probability to participate in the program mentioned in the header against the alternative of not taking part in any program in the stratum. The estimations are carried out separately for each time window of elapsed unemployment duration (Stratum 1, 2, and 3). Standard errors are in parentheses. *, **, *** means significant at the 10%, 5%, 1% level, respectively, in a two-sided test. Each probit table is followed by a table indicating how many regressors pass the Smith/Todd (2005) balancing test at different significance levels using a cubic and a quartic of the propensity score, respectively. Graphs with the densities of the propensity scores are in the next subsection.
Table 8: Propensity Score Estimates Women Practice Firm

<table>
<thead>
<tr>
<th>COEFFICIENT</th>
<th>Stratum 1</th>
<th>Stratum 2</th>
<th>Stratum 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td>0.0669 (0.073)</td>
<td>0.0972 (0.065)</td>
<td>0.0615 (0.075)</td>
</tr>
<tr>
<td>age_sq</td>
<td>-0.000798 (0.00089)</td>
<td>-0.00118 (0.00080)</td>
<td>-0.000643 (0.00089)</td>
</tr>
<tr>
<td>married</td>
<td>-0.221* (0.13)</td>
<td>-0.169 (0.13)</td>
<td></td>
</tr>
<tr>
<td>qual_l</td>
<td>0.254 (0.43)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>qual_m</td>
<td>0.255 (0.39)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BER2</td>
<td>-0.0267 (0.13)</td>
<td></td>
<td>-0.0419 (0.20)</td>
</tr>
<tr>
<td>entglow</td>
<td>0.292 (0.55)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>logearn_sq</td>
<td>0.0298 (0.029)</td>
<td>0.0213 (0.018)</td>
<td></td>
</tr>
<tr>
<td>frmsize2</td>
<td>0.521*** (0.17)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>frmsize3</td>
<td>0.457** (0.21)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>state3</td>
<td>0.399* (0.24)</td>
<td></td>
<td>0.796** (0.36)</td>
</tr>
<tr>
<td>state4</td>
<td>0.337 (0.22)</td>
<td>0.707** (0.33)</td>
<td>0.840** (0.36)</td>
</tr>
<tr>
<td>state5</td>
<td>0.901*** (0.21)</td>
<td></td>
<td>0.779** (0.37)</td>
</tr>
<tr>
<td>BER3_married</td>
<td></td>
<td>0.193 (0.12)</td>
<td></td>
</tr>
<tr>
<td>preex12</td>
<td>-0.0887 (0.14)</td>
<td>-0.0445 (0.16)</td>
<td></td>
</tr>
<tr>
<td>state1</td>
<td>0.801** (0.34)</td>
<td>1.084*** (0.37)</td>
<td></td>
</tr>
<tr>
<td>state35</td>
<td>0.870*** (0.32)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>popdens</td>
<td>0.0436 (0.11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>popdens_sq</td>
<td></td>
<td>-0.0213 (0.064)</td>
<td></td>
</tr>
<tr>
<td>BER3</td>
<td></td>
<td>0.333* (0.19)</td>
<td></td>
</tr>
<tr>
<td>pearn</td>
<td></td>
<td>-1.260* (0.74)</td>
<td></td>
</tr>
<tr>
<td>logearn</td>
<td>0.283 (0.19)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>uentry_sq</td>
<td></td>
<td>-0.000311 (0.00040)</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>-5.174*** (1.53)</td>
<td>-5.103*** (1.36)</td>
<td>-3.966** (1.56)</td>
</tr>
<tr>
<td>Observations</td>
<td>5820</td>
<td>3906</td>
<td>2342</td>
</tr>
<tr>
<td>PseudoR^2</td>
<td>0.0977</td>
<td>0.0397</td>
<td>0.0685</td>
</tr>
</tbody>
</table>

Table 10: Propensity Score Estimates Women SPST

<table>
<thead>
<tr>
<th>COEFFICIENT</th>
<th>Stratum 1</th>
<th>Stratum 2</th>
<th>Stratum 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a3034</td>
<td>0.0240 (0.11)</td>
<td>0.123 (0.098)</td>
<td>0.247** (0.11)</td>
</tr>
<tr>
<td>a3539</td>
<td>0.482* (0.26)</td>
<td>0.107 (0.10)</td>
<td>-0.0693 (0.14)</td>
</tr>
<tr>
<td>a4044</td>
<td>0.523** (0.26)</td>
<td>-0.0184 (0.10)</td>
<td>0.0334 (0.14)</td>
</tr>
<tr>
<td>a4549</td>
<td>0.124 (0.30)</td>
<td>-0.223* (0.12)</td>
<td>0.0154 (0.14)</td>
</tr>
<tr>
<td>a5055</td>
<td>0.154 (0.30)</td>
<td>-0.310*** (0.10)</td>
<td>-0.288** (0.13)</td>
</tr>
<tr>
<td>Variable</td>
<td>Coefficient</td>
<td>Standard Error</td>
<td>t-value</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>married</td>
<td>-0.00535</td>
<td>(0.063)</td>
<td>0.0481</td>
</tr>
<tr>
<td>qual</td>
<td>-0.178*</td>
<td>(0.10)</td>
<td>-0.0439</td>
</tr>
<tr>
<td>BER2</td>
<td>-0.313***</td>
<td>(0.089)</td>
<td>-0.0569</td>
</tr>
<tr>
<td>BER3</td>
<td>-0.0116</td>
<td>(0.087)</td>
<td>0.250***</td>
</tr>
<tr>
<td>logearn_sq</td>
<td>0.0529***</td>
<td>(0.012)</td>
<td>0.822</td>
</tr>
<tr>
<td>earnccens</td>
<td>0.510</td>
<td>(0.51)</td>
<td>0.842</td>
</tr>
<tr>
<td>state1</td>
<td>-0.0397</td>
<td>(0.094)</td>
<td>-0.184*</td>
</tr>
<tr>
<td>state2</td>
<td>-0.248**</td>
<td>(0.098)</td>
<td>0.0280</td>
</tr>
<tr>
<td>state3</td>
<td>-0.0977</td>
<td>(0.085)</td>
<td>-0.282***</td>
</tr>
<tr>
<td>state5</td>
<td>-0.152*</td>
<td>(0.091)</td>
<td>-0.214**</td>
</tr>
<tr>
<td>uentry</td>
<td>-0.0546***</td>
<td>(0.015)</td>
<td>0.113***</td>
</tr>
<tr>
<td>uentry_sq</td>
<td>0.00324***</td>
<td>(0.00063)</td>
<td>-0.00339***</td>
</tr>
<tr>
<td>preex12</td>
<td>0.652***</td>
<td>(0.21)</td>
<td></td>
</tr>
<tr>
<td>preex12_a3544</td>
<td>-0.607**</td>
<td>(0.29)</td>
<td></td>
</tr>
<tr>
<td>preex12_a4555</td>
<td>-0.748**</td>
<td>(0.35)</td>
<td></td>
</tr>
<tr>
<td>preex12cum_sq</td>
<td>-0.0601</td>
<td>(0.071)</td>
<td>0.0410***</td>
</tr>
<tr>
<td>preex12cum_sq_a3544</td>
<td>0.0320</td>
<td>(0.095)</td>
<td></td>
</tr>
<tr>
<td>preex12cum_sq_a4555</td>
<td>0.318***</td>
<td>(0.10)</td>
<td></td>
</tr>
<tr>
<td>preex12cum</td>
<td>-0.244*</td>
<td>(0.15)</td>
<td>0.168**</td>
</tr>
<tr>
<td>preex12cum_a3544</td>
<td>0.132</td>
<td>(0.20)</td>
<td></td>
</tr>
<tr>
<td>preex12cum_a4555</td>
<td>0.636***</td>
<td>(0.24)</td>
<td></td>
</tr>
<tr>
<td>pretx1</td>
<td>-0.453***</td>
<td>(0.16)</td>
<td>-0.286**</td>
</tr>
<tr>
<td>qual_h</td>
<td>0.227*</td>
<td>(0.13)</td>
<td>-0.276</td>
</tr>
<tr>
<td>pearh</td>
<td>-1.080***</td>
<td>(0.40)</td>
<td>-0.765*</td>
</tr>
<tr>
<td>logearn</td>
<td>0.350***</td>
<td>(0.10)</td>
<td>0.307***</td>
</tr>
<tr>
<td>industry3</td>
<td>0.364**</td>
<td>(0.15)</td>
<td>-0.153</td>
</tr>
<tr>
<td>industry4</td>
<td>0.0907</td>
<td>(0.16)</td>
<td>0.117</td>
</tr>
<tr>
<td>industry5</td>
<td>-0.149</td>
<td>(0.20)</td>
<td>-0.102</td>
</tr>
<tr>
<td>industry67</td>
<td>0.112</td>
<td>(0.11)</td>
<td></td>
</tr>
<tr>
<td>industry6</td>
<td>0.0405</td>
<td>(0.11)</td>
<td></td>
</tr>
<tr>
<td>industry7</td>
<td>-0.175*</td>
<td>(0.10)</td>
<td></td>
</tr>
<tr>
<td>frmsize2</td>
<td>0.247***</td>
<td>(0.087)</td>
<td></td>
</tr>
<tr>
<td>frmsize3</td>
<td>0.259**</td>
<td>(0.11)</td>
<td></td>
</tr>
<tr>
<td>frmsize4</td>
<td>0.179*</td>
<td>(0.11)</td>
<td></td>
</tr>
<tr>
<td>popdens</td>
<td>0.0718</td>
<td>(0.063)</td>
<td></td>
</tr>
<tr>
<td>popdens_sq</td>
<td>0.00989</td>
<td>(0.037)</td>
<td></td>
</tr>
<tr>
<td>married_a3544</td>
<td>0.318**</td>
<td>(0.16)</td>
<td></td>
</tr>
<tr>
<td>married_a4555</td>
<td>0.271*</td>
<td>(0.15)</td>
<td></td>
</tr>
<tr>
<td>COEFFICIENT</td>
<td>Stratum 1</td>
<td>Stratum 2</td>
<td>Stratum 3</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>a2529</td>
<td>0.597*** (0.18)</td>
<td>1.106*** (0.37)</td>
<td></td>
</tr>
<tr>
<td>a3034</td>
<td>0.404** (0.18)</td>
<td>1.206*** (0.36)</td>
<td></td>
</tr>
<tr>
<td>a3539</td>
<td>0.0882 (0.21)</td>
<td>0.942** (0.37)</td>
<td></td>
</tr>
<tr>
<td>a4044</td>
<td>0.0421 (0.21)</td>
<td>0.818** (0.38)</td>
<td></td>
</tr>
<tr>
<td>married</td>
<td>0.377*** (0.12)</td>
<td>0.172 (0.11)</td>
<td>-0.0568 (0.14)</td>
</tr>
<tr>
<td>qual_l</td>
<td>-0.159 (0.17)</td>
<td>-0.116 (0.16)</td>
<td>-0.731** (0.29)</td>
</tr>
<tr>
<td>qual_h</td>
<td>-0.0540 (0.25)</td>
<td>-0.307 (0.32)</td>
<td></td>
</tr>
<tr>
<td>BER2</td>
<td>0.0616 (0.15)</td>
<td>0.592** (0.29)</td>
<td></td>
</tr>
<tr>
<td>BER3</td>
<td>-0.100 (0.17)</td>
<td>0.542* (0.30)</td>
<td></td>
</tr>
<tr>
<td>earn</td>
<td>0.0106** (0.0042)</td>
<td>0.0110*** (0.0038)</td>
<td></td>
</tr>
<tr>
<td>preex12cum</td>
<td>0.142** (0.064)</td>
<td>0.263* (0.14)</td>
<td></td>
</tr>
<tr>
<td>state1</td>
<td>0.211 (0.18)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>state24</td>
<td>0.375*** (0.12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>uentry</td>
<td>-0.0989*** (0.025)</td>
<td>0.133*** (0.033)</td>
<td>-0.0368*** (0.013)</td>
</tr>
<tr>
<td>uentry_sq</td>
<td>0.00431*** (0.0011)</td>
<td>-0.00510*** (0.0014)</td>
<td></td>
</tr>
<tr>
<td>age</td>
<td>0.120 (0.10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>age_sq</td>
<td>-0.00243* (0.0015)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>preex12cum_sq</td>
<td>0.159* (0.082)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>preex12cum_sq_a2539</td>
<td>-0.112* (0.066)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>state2</td>
<td>-0.304* (0.18)</td>
<td>-0.575** (0.26)</td>
<td></td>
</tr>
<tr>
<td>state3</td>
<td>-0.417** (0.18)</td>
<td>-0.352 (0.22)</td>
<td></td>
</tr>
<tr>
<td>state4</td>
<td>-0.103 (0.15)</td>
<td>-0.448** (0.22)</td>
<td></td>
</tr>
<tr>
<td>state5</td>
<td>-0.446** (0.19)</td>
<td>-0.150 (0.21)</td>
<td></td>
</tr>
<tr>
<td>logearn_sq</td>
<td></td>
<td></td>
<td>0.0538** (0.026)</td>
</tr>
<tr>
<td>frmsize4</td>
<td></td>
<td></td>
<td>0.376 (0.23)</td>
</tr>
<tr>
<td>frmsize4_uentry</td>
<td>0.00685 (0.022)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>-3.083*** (0.29)</td>
<td>-4.104** (1.79)</td>
<td>-3.394*** (0.56)</td>
</tr>
<tr>
<td>Observations</td>
<td>4713</td>
<td>3071</td>
<td>1724</td>
</tr>
<tr>
<td>PseudoR^2</td>
<td>0.0950</td>
<td>0.117</td>
<td>0.162</td>
</tr>
</tbody>
</table>
Table 9: Balancing Tests Women Practice Firm

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Degree of Polynomial</th>
<th>P-values</th>
<th>Regressors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>>.10</td>
<td>>.05</td>
<td>>.01</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>7</td>
<td>11</td>
</tr>
</tbody>
</table>

Table 11: Balancing Tests Women SPST

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Degree of Polynomial</th>
<th>P-values</th>
<th>Regressors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>>.10</td>
<td>>.05</td>
<td>>.01</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>30</td>
<td>31</td>
</tr>
</tbody>
</table>

Table 13: Balancing Tests Women RT

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Degree of Polynomial</th>
<th>P-values</th>
<th>Regressors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>>.10</td>
<td>>.05</td>
<td>>.01</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>
Table 14: **Propensity Score Estimates Men Practice Firm**

<table>
<thead>
<tr>
<th>COEFFICIENT</th>
<th>Stratum 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td>0.0515 (0.067)</td>
</tr>
<tr>
<td>age_sq</td>
<td>-0.000821 (0.00085)</td>
</tr>
<tr>
<td>BER3</td>
<td>-0.231 (0.21)</td>
</tr>
<tr>
<td>earn</td>
<td>-0.00313 (0.0050)</td>
</tr>
<tr>
<td>frmsize4</td>
<td>0.419*** (0.14)</td>
</tr>
<tr>
<td>state1</td>
<td>0.447** (0.18)</td>
</tr>
<tr>
<td>state3</td>
<td>0.490*** (0.16)</td>
</tr>
<tr>
<td>state5</td>
<td>0.363** (0.18)</td>
</tr>
<tr>
<td>uentry</td>
<td>0.0181 (0.030)</td>
</tr>
<tr>
<td>uentry_sq</td>
<td>-0.00119 (0.0013)</td>
</tr>
<tr>
<td>Constant</td>
<td>-3.367*** (1.28)</td>
</tr>
<tr>
<td>Observations</td>
<td>5598</td>
</tr>
<tr>
<td>PseudoR^2</td>
<td>0.0663</td>
</tr>
</tbody>
</table>

Table 15: **Balancing Tests Men Practice Firm**

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Degree of Polynominal</th>
<th>P-values</th>
<th>Regressors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.10</td>
<td>.05</td>
<td>.01</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

Table 16: **Propensity Score Estimates Men SPST**

<table>
<thead>
<tr>
<th>COEFFICIENT</th>
<th>Stratum 1</th>
<th>Stratum 2</th>
<th>Stratum 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a2529</td>
<td>0.225 (0.15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a3034_4044</td>
<td>0.476*** (0.10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a3539</td>
<td>0.318** (0.15)</td>
<td></td>
<td>0.254 (0.19)</td>
</tr>
<tr>
<td>a4549</td>
<td>0.307** (0.12)</td>
<td>-0.334 (0.26)</td>
<td>0.0794 (0.22)</td>
</tr>
<tr>
<td>married</td>
<td>0.133* (0.069)</td>
<td>-0.0324 (0.087)</td>
<td>-0.105 (0.097)</td>
</tr>
<tr>
<td>qual_l</td>
<td>-0.0892 (0.11)</td>
<td>0.0145 (0.11)</td>
<td>0.292 (0.22)</td>
</tr>
<tr>
<td>qual_h</td>
<td>0.470*** (0.12)</td>
<td>-0.104 (0.17)</td>
<td>0.438*** (0.16)</td>
</tr>
<tr>
<td>BER3</td>
<td>0.152 (0.096)</td>
<td>0.429* (0.24)</td>
<td>0.0447 (0.22)</td>
</tr>
<tr>
<td>logearn</td>
<td>0.128 (0.093)</td>
<td>0.0582 (0.096)</td>
<td></td>
</tr>
<tr>
<td>earnccens</td>
<td>0.541 (0.43)</td>
<td>0.0931 (0.49)</td>
<td></td>
</tr>
<tr>
<td>industry6</td>
<td>0.0362 (0.088)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>industry57</td>
<td>-0.208*** (0.078)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.163* (0.088)</td>
<td>0.275** (0.12)</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>frmsize2</td>
<td>0.148 (0.12)</td>
<td>0.154 (0.17)</td>
<td></td>
</tr>
<tr>
<td>frmsize3</td>
<td>0.356*** (0.11)</td>
<td>0.193 (0.15)</td>
<td></td>
</tr>
<tr>
<td>frmsize4</td>
<td>0.183 (0.12)</td>
<td>-0.136 (0.12)</td>
<td></td>
</tr>
<tr>
<td>preex12cum_sq</td>
<td>0.0195 (0.026)</td>
<td>0.0434 (0.033)</td>
<td></td>
</tr>
<tr>
<td>preex12_a4055</td>
<td>0.124 (0.10)</td>
<td>1.023*** (0.064)</td>
<td></td>
</tr>
<tr>
<td>popdens</td>
<td>-0.104** (0.042)</td>
<td>0.0954*** (0.026)</td>
<td></td>
</tr>
<tr>
<td>uentry</td>
<td>0.0176 (0.016)</td>
<td>0.00145** (0.0068)</td>
<td></td>
</tr>
<tr>
<td>uentry_sq</td>
<td>-0.104** (0.042)</td>
<td>0.0954*** (0.026)</td>
<td></td>
</tr>
<tr>
<td>a3039</td>
<td>0.000506 (0.14)</td>
<td>0.233 (0.15)</td>
<td></td>
</tr>
<tr>
<td>a4044</td>
<td>-0.674** (0.27)</td>
<td>0.0651 (0.22)</td>
<td></td>
</tr>
<tr>
<td>a5055</td>
<td>0.0651 (0.22)</td>
<td>-0.133 (0.21)</td>
<td></td>
</tr>
<tr>
<td>BER2</td>
<td>0.529** (0.26)</td>
<td>0.529** (0.26)</td>
<td></td>
</tr>
<tr>
<td>a3034</td>
<td>-0.547* (0.33)</td>
<td>-0.291 (0.29)</td>
<td></td>
</tr>
<tr>
<td>qual_l</td>
<td>0.840*** (0.22)</td>
<td>0.684*** (0.22)</td>
<td></td>
</tr>
<tr>
<td>preex12cum_sq</td>
<td>-0.123** (0.061)</td>
<td>0.0954*** (0.026)</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>-3.019*** (0.39)</td>
<td>-2.551*** (0.42)</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>5758</td>
<td>2846</td>
<td>1525</td>
</tr>
<tr>
<td>PseudoR²</td>
<td>0.0807</td>
<td>0.0567</td>
<td>0.0353</td>
</tr>
</tbody>
</table>

Table 17: Balancing Tests Men SPST

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Degree of Polynominal</th>
<th>P-values</th>
<th>Regressors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>>.10</td>
<td>>.05</td>
<td>>.01</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>

Table 18: Propensity Score Estimates Men RT

<table>
<thead>
<tr>
<th>COEFFICIENT</th>
<th>Stratum 1</th>
<th>Stratum 2</th>
<th>Stratum 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a2529</td>
<td>0.970***</td>
<td>0.843***</td>
<td>0.843***</td>
</tr>
<tr>
<td>a3034</td>
<td>1.034***</td>
<td>0.683***</td>
<td>0.683***</td>
</tr>
<tr>
<td>a3539</td>
<td>0.840***</td>
<td>0.684***</td>
<td>0.684***</td>
</tr>
<tr>
<td>Variable</td>
<td>Regression Coefficient</td>
<td>Standard Error</td>
<td>t-value</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>a4044</td>
<td>0.651***</td>
<td>(0.25)</td>
<td></td>
</tr>
<tr>
<td>married</td>
<td>0.0561</td>
<td>(0.090)</td>
<td></td>
</tr>
<tr>
<td>qual_l</td>
<td>-0.174</td>
<td>(0.14)</td>
<td></td>
</tr>
<tr>
<td>qual_h</td>
<td>-0.604*</td>
<td>(0.35)</td>
<td></td>
</tr>
<tr>
<td>logearn</td>
<td>0.0752</td>
<td>(0.092)</td>
<td></td>
</tr>
<tr>
<td>frmsize2</td>
<td>0.325***</td>
<td>(0.12)</td>
<td></td>
</tr>
<tr>
<td>frmsize3</td>
<td>0.377**</td>
<td>(0.16)</td>
<td></td>
</tr>
<tr>
<td>frmsize4</td>
<td>0.511***</td>
<td>(0.15)</td>
<td></td>
</tr>
<tr>
<td>preex12</td>
<td>-0.303*</td>
<td>(0.17)</td>
<td></td>
</tr>
<tr>
<td>preex12cum</td>
<td>0.352***</td>
<td>(0.13)</td>
<td></td>
</tr>
<tr>
<td>preex12cum_sq</td>
<td>0.124**</td>
<td>(0.056)</td>
<td></td>
</tr>
<tr>
<td>state1</td>
<td>0.0417</td>
<td>(0.13)</td>
<td></td>
</tr>
<tr>
<td>state2</td>
<td>-0.0132</td>
<td>(0.14)</td>
<td></td>
</tr>
<tr>
<td>state3</td>
<td>0.0538</td>
<td>(0.12)</td>
<td></td>
</tr>
<tr>
<td>state5</td>
<td>-0.290**</td>
<td>(0.15)</td>
<td></td>
</tr>
<tr>
<td>popdens</td>
<td>0.250***</td>
<td>(0.089)</td>
<td></td>
</tr>
<tr>
<td>popdens_sq</td>
<td>-0.192***</td>
<td>(0.066)</td>
<td></td>
</tr>
<tr>
<td>uentry</td>
<td>0.00237</td>
<td>(0.0062)</td>
<td></td>
</tr>
<tr>
<td>qual_m</td>
<td>-0.260</td>
<td>(0.24)</td>
<td></td>
</tr>
<tr>
<td>BER2</td>
<td>0.322</td>
<td>(0.41)</td>
<td></td>
</tr>
<tr>
<td>BER3</td>
<td>0.140</td>
<td>(0.43)</td>
<td></td>
</tr>
<tr>
<td>logearn_sq</td>
<td>0.0196</td>
<td>(0.019)</td>
<td></td>
</tr>
<tr>
<td>uentry_sq</td>
<td>-0.00240*</td>
<td>(0.0013)</td>
<td></td>
</tr>
<tr>
<td>age</td>
<td>-0.0502</td>
<td>(0.13)</td>
<td></td>
</tr>
<tr>
<td>age_sq</td>
<td>0.000270</td>
<td>(0.0017)</td>
<td></td>
</tr>
<tr>
<td>pretx1</td>
<td>0.530*</td>
<td>(0.30)</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>-3.085***</td>
<td>(0.44)</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>4551</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PseudoR²</td>
<td>0.0814</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observations 4551, 2125, 1030
Table 19: Balancing Tests Men RT

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Degree of Polynomial</th>
<th>P-values</th>
<th>Regressors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>>.10</td>
<td>>.05</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>7</td>
<td>9</td>
</tr>
</tbody>
</table>

1.5 Common Support
Figure 1: Densities of Propensity Scores for Women
Figure 2: Densities of Propensity Scores for Men
2 Information about the data

2.1 Other types of further training

In this study we are interested in active labor market programs for unemployed who have previously been employed and who have not already found a new job. However, we also want to give a short overview about other programs regulated by the labor promotion act (AFG) which we do not evaluate.

German Courses
The German Courses are intended for newly arrived immigrants. So the participants typically have not been employed in Germany before the German Course and hence are not part of the focus group of this study, the previously employed unemployed.

Career Advancement
These programs are typical programs directed at the employed, which were more important when the labor promotion act was introduced in 1969. By providing additional human capital the participant’s risk of becoming unemployed should be lowered. Prime examples are courses in which the participants with a vocational training degree obtain additional certificates which allow them to independently run craftsman’s establishments and to train trainees in the dual system of vocational training.

Wage subsidies
Wage subsidies are paid for the employment of formerly long-term unemployed and are intended to decrease the competitive disadvantage of these recruits for the period of familiarization with the skill requirement of the job. Even if the target group of wage subsidies are also unemployed we do not evaluate them because they require a job for which the wage subsidy is paid. This means provision of wage subsidies is already conditional on employment which is the success criteria for the other programs.

Any program which starts together with a job
For the same reasons why we do not evaluate wage subsidies we also do not evaluate any program which starts together with employment. Because we want to evaluate the program’s effect on employment we do not consider programs which start together with employment.
2.2 Construction of the monthly panel

The IABS employment and LED benefit payment data are daily register data whereas the FuU training data gives monthly information about program participation. This study uses the merged data as described in Bender et al. (2005). From the merged data we construct a monthly panel. If the original daily data contain more than one spell overlapping a specific month we take the information from the spell with the largest overlap as the spell defining the monthly information.

The defining condition to be part of our inflow sample into unemployment is a transition from an employment month to a nonemployment month, in which the last employment month was between December 1992 and November 1993 and thus the first unemployment month was between January 1993 and December 1994. In order to divide nonemployment (to be precise: not employed subject to social security contributions) into unemployment and other states (like labor market leavers, transition into self employment, employment as civil servant) we additionally require a month with benefit payments from the employment office within the first twelve month of nonemployment or indication of participation in any labor market program in one of our data to be part of the inflow sample in unemployment.

Later on we aggregate the information further from monthly to quarterly information. Whereas the monthly employment information is binary the quarterly employment information can take the values 0, 1/3, 2/3 or 1.

We identify program participation if a person starts a program while being in the defining unemployment spell. The participant must not be employed in in the first month of the program. Otherwise we would consider such a program as a program which starts together with a job which we do not evaluate. In this case we would treat such a person as being employed. The exact identification of the program types will be explained in the following.

2.3 Identifying program participation

We identify participation in a further training program from a combination of FuU training data information, the benefit payment information and the employment status information. In principle, every participant in a further training program should be recorded in the FuU training data and we would not need the benefit
payment data for identification of participation. There are two reasons to use the benefit payment data as well. First we find the training data to be incomplete, many recipients of training related benefits are not contained in the training data.\(^1\) Only using the benefit payment data identifies these participants. Second, quite often the type of training in the training data is given very unspecific as “Other adjustment of working skills”. The benefit payment data can give more information about these programs. Finally we need the employment status to identify participation because we only evaluate programs which start while being unemployed.

In the remaining part of this section we describe how we aggregate the benefit payment information and the training data information. The next section contains the exact coding plan. We disclose in detail which combination of information from benefit payment and training data we identify as PF, SPST or RT.\(^2\)

Benefit payment information from the LED-data

The merged data we use contain three variables with benefit payment information from the original LED data, (“parallel original benefit information 1-3” [Leistungsart im Original 1-3] L1LA1, L2LA1, L3LA1). The main variable is L1LA1. If there are two parallel payment informations in the original data L1LA2 also contains information and only if there is a third parallel payment spell L3LA1 is also filled. In general we use L1LA1. Only if L1LA1 is not informative about program participation and L2LA1 is we use L2LA1 and only if L1LA1 and L2LA1 are not informative but L3LA1 we use L3LA1. The benefit payment information is given in time varying three-digit codes (for the coding plan see Bender et al. 2005). We extracted the program related information from the benefit payment information as given in table 20. The main distinction regarding program participation is the distinction between no benefits at all or unemployment benefits/assistance on the one hand and program related maintenance benefits on the other hand. There are five types of program related benefits. Most important for us are the more general maintenance benefits while in further training and the more specific maintenance benefits while in retraining.

\(^1\)Remember the purpose of the training data was only internal documentation. This might explain its incompleteness.

\(^2\)More details about the benefit payment data and training data can be found in Speckesser (2004), Fitzenberger and Speckesser (2005) and Bender et al. (2005).
Table 20: Aggregated types of benefit payment

<table>
<thead>
<tr>
<th>German Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALG</td>
<td>unemployment benefits</td>
</tr>
<tr>
<td>ALHi</td>
<td>unemployment assistance</td>
</tr>
<tr>
<td>UHG §41a</td>
<td>maintenance payment while in specific short term measure</td>
</tr>
<tr>
<td>UHG Fortbildung</td>
<td>maintenance payment while in further training</td>
</tr>
<tr>
<td>UHG Umschulung</td>
<td>maintenance payment while in retraining</td>
</tr>
<tr>
<td>UHG Darlehen</td>
<td>maintenance payment as a loan</td>
</tr>
<tr>
<td>UHG Deutsch</td>
<td>maintenance payment while in a German course</td>
</tr>
</tbody>
</table>

The original benefit payment information is given in three variables L1LA1, L2LA1 and L3LA1 with time varying three-digit codes.

Type of training from FuU-data

In this evaluation study one of the most important advantages compared to survey data is the information about the precise type of training. It allows us to identify homogeneous treatments for the evaluation. In the merging process, up to two parallel FuU-spells were merged to one spell of the IABS data because in many cases the FuU-data provided more than one parallel spell. These two parallel spells provide two variables indicating the type of course (Maßnahmeart [FMASART1, FMASART2]).

Aggregating the training type information Since type of treatment (Maßnahmeart) is often coded as “other adjustment” (FMASART1=12 [Sonstige Anpassungen]) in the FuU-data, we increase the precision of information about the type of treatment by relying on the second parallel information about the type of training: The second FuU-spell is used if the first FuU-spell is coded as “other adjustment” (“Sonstige Anpassungen”) and a second spell includes a code different from 12. Such combined information of FMASART1 and FMASART2 is referred to as FMASART* in the following.

Combining the information

When using information from different sources, the sources may give differing information. If the training data indicated training participation and the benefit payment data did not or vice versa we relied on the source which indicated training for the following reasons. If somebody receives training related benefits it is more likely that the employment agency forgot to fill in the training data record than the agency
wrongly induced payment of benefits. And if somebody is contained in the training data but does not receive maintenance benefits he either receives no benefits, which is possible while being in training, or receives unemployment benefits/assistance and the payment is just wrongly labelled.

If both training and benefit payment data indicate program participation but differ in the type of program we generally use the training data information. An example: the benefit payment indicates maintenance payments for further training and the training data indicates Retraining. We use Retraining from the training data. The only exception is unspecific program information from the training data “other adjustment”. If in such cases the benefit payment data give specific information like Retraining we use the information from benefit payment data. All possible combinations of training and benefit payment information which we use to identify participation in one of the three programs are given in the following section.

2.4 Coding plan for the treatment information

This section gives the exact coding plans for identification of Practice Firm, SPST and Retraining. In general we identify program participation as start of a program in an unemployment spell before another employment begins. This means that we only identify a start of a program if the employment status in the first month of the program indicates no employment (BTYP≠1).

Practice Firm

Practice Firm is a consolidation of the program types Practice enterprise and Practice studio from the FuU training data. There is no specific benefit payment type related to Practice Firms, rather the participants shall receive the general maintenance payment for further training. Since the training data are more reliable than the benefit payment data regarding type of the program we identify Practice Firm whenever FMASART shows the codes 11 or 12 independently of the payment information.

<table>
<thead>
<tr>
<th>Program code</th>
<th>Label</th>
<th>Label in German</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Practice enterprise</td>
<td>Übungsfirma</td>
</tr>
<tr>
<td>11</td>
<td>Practice studio</td>
<td>Übungswerkstatt</td>
</tr>
</tbody>
</table>
In table 21 we show how often which combination of benefit payment information and program type information identifies *Practice Firm* in the two inflow samples.

Table 21: Identification of *Practice Firm* with program type and benefit payment type: Frequencies

<table>
<thead>
<tr>
<th>Program</th>
<th>Type of payment</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no benefits UB/UA</td>
<td></td>
</tr>
<tr>
<td>Practice enterprise</td>
<td>short term training</td>
<td>106</td>
</tr>
<tr>
<td>Practice studio</td>
<td>short term training</td>
<td>110</td>
</tr>
<tr>
<td>Total</td>
<td>short term training</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td>further retraining</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>218</td>
</tr>
</tbody>
</table>

Women and Men together. BTYP ≠1 as an additional requirement.

Provision of specific professional skills and techniques

We identify SPST in the following cases.

(a) Identification from training data and benefit payment data

We identify SPST if the training data indicates the general program “Other adjustment” and the benefit payment information is no benefit payments, unemployment benefits, unemployment assistance or maintenance payments while in retraining.

<table>
<thead>
<tr>
<th>Program code</th>
<th>Label</th>
<th>Label in German</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Other adjustment of working skills</td>
<td>sonst. Anpassung der berufl. Kenntnisse</td>
</tr>
</tbody>
</table>

(b) Reliance on benefit payment data

We identify SPST if the program information from the training data is missing and the benefit payment information is maintenance payments while in further training.

<table>
<thead>
<tr>
<th>Program code</th>
<th>Label</th>
<th>Label in German</th>
</tr>
</thead>
<tbody>
<tr>
<td>-9</td>
<td>missing</td>
<td>fehlende Angabe</td>
</tr>
</tbody>
</table>

(c) Additional program from training data

We also identify SPST when another program of little quantitative importance but SPST–comparable content is recorded in the training data independent of the benefit payment information.
(d) Additional combination

Finally we identify SPST if the training data indicate the unspecific “other career advancement” and the benefit payment information indicates further training.

<table>
<thead>
<tr>
<th>Program code</th>
<th>Label</th>
<th>Label in German</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Further education of trainers and multidisciplinary qualification</td>
<td>Heran-/Fortbildung v. Ausbildungskräften/ berufsfeldübergreifende Qualifikation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Program code</th>
<th>Label</th>
<th>Label in German</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>Other promotion</td>
<td>sonstiger Aufstieg (< 97)</td>
</tr>
</tbody>
</table>

In table 22 we show how often which combination of benefit payment information and program type information identifies SPST in the two inflow samples.

Table 22: Identification of SPST with program type and benefit payment type: Frequencies

<table>
<thead>
<tr>
<th>Program code</th>
<th>Type of payment</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no benefits</td>
<td>UB/UA</td>
</tr>
<tr>
<td>missing</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>adjustment</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>working</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>skills</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td>10</td>
</tr>
</tbody>
</table>

Women and Men together. BTYP≠1 as an additional requirement.

Retraining

Retraining or longer ”Qualification for the first labor market via the education system” is taking part in a new vocational training and obtaining a new vocational training degree according to the German dual education system. Additionally, but quantitatively of little importance we see the make up of a missed examination “Certification” as comparable to retraining because the result is the same. Furthermore and also only of marginal importance we see participation in the programs “Technician” or “Master of Business administration (not comparable to an american style
MBA)” while not receiving maintenance benefits as a loan as Retraining. Conventionally these two programs are considered as career advancement programs which we do not evaluate. Benefits as a loan would underline their character as career advancements.

(a) Identification from training data

We identify the following two programs as Retraining independent of the benefit payment information.

<table>
<thead>
<tr>
<th>Program code</th>
<th>Label</th>
<th>Label in German</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>Certification</td>
<td>beruf. Abschlussprüfung</td>
</tr>
<tr>
<td>32</td>
<td>Retraining</td>
<td>Umschulung</td>
</tr>
</tbody>
</table>

(b) Reliance on benefit payment data

If the training data is uninformative and maintenance benefits for Retraining are paid we identify Retraining.

<table>
<thead>
<tr>
<th>Program code</th>
<th>Label</th>
<th>Label in German</th>
</tr>
</thead>
<tbody>
<tr>
<td>-9</td>
<td>missing</td>
<td>fehlende Angabe</td>
</tr>
<tr>
<td>12</td>
<td>Other adjustment of working skills</td>
<td>sonst. Anpassung der berufl. Kenntnisse</td>
</tr>
</tbody>
</table>

(c) Other programs from training data

Two other programs are identified from the training data. They typically also take two years full time and require an existing vocational training degree, hence are somewhat comparable to retraining in a narrower definition. Not identified if maintenance benefits are paid as a loan.

<table>
<thead>
<tr>
<th>Program code</th>
<th>Label</th>
<th>Label in German</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>Technician</td>
<td>Techniker (<97)</td>
</tr>
<tr>
<td>27</td>
<td>Master of business admin</td>
<td>Betriebswirt (<97)</td>
</tr>
</tbody>
</table>

In table 23 we show how often which combination of benefit payment information and program type information identifies Retraining in the two inflow samples.
Table 23: Identification of *Retraining* with program type and benefit payment type: Frequencies

<table>
<thead>
<tr>
<th>Program</th>
<th>Type of payment</th>
<th></th>
<th></th>
<th></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no benefits</td>
<td>UB/UA</td>
<td>maintenance</td>
<td>further training</td>
<td>retraining</td>
</tr>
<tr>
<td>missing</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>55</td>
<td>0</td>
</tr>
<tr>
<td>Other adjustment of working</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>skills</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Technician</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Master of business administration</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Certification</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Retraining</td>
<td>2</td>
<td>2</td>
<td>219</td>
<td>137</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>2</td>
<td>2</td>
<td>220</td>
<td>205</td>
<td>0</td>
</tr>
</tbody>
</table>

Women and Men together. BTYP≠1 as an additional requirement.
2.5 Sample construction in comparison to LMW

<table>
<thead>
<tr>
<th>Table 24: Overview sample construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>this paper</td>
</tr>
<tr>
<td>Inflow sample</td>
</tr>
<tr>
<td>Treatment group</td>
</tr>
<tr>
<td>Control group</td>
</tr>
<tr>
<td>Treatment identification</td>
</tr>
<tr>
<td>Age restriction</td>
</tr>
<tr>
<td>Benefit payment restriction</td>
</tr>
<tr>
<td>Other restrictions</td>
</tr>
<tr>
<td>Sample size RT</td>
</tr>
<tr>
<td>Sample size SPST (this paper) and short and long training (LMW)</td>
</tr>
<tr>
<td>Sample size non-participants</td>
</tr>
</tbody>
</table>
3 Heterogeneous Treatment Effects by Target Profession

3.1 Retraining for Men

In this section we show heterogeneous treatment effects of retraining on men. We contrast retraining (RT) with target profession in construction with RT with other target profession (non-construction).

The effects are estimated in the same way as the non-disaggregated effects in the paper. We used the same propensity score specifications and bandwidth as in the paper.

Table 25: Sample sizes: Retraining for men by target profession

<table>
<thead>
<tr>
<th></th>
<th>Stratum 1</th>
<th>Stratum 2</th>
<th>Stratum 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>40</td>
<td>29</td>
<td>19</td>
</tr>
<tr>
<td>Non-construction</td>
<td>50</td>
<td>40</td>
<td>13</td>
</tr>
<tr>
<td>missing</td>
<td>17</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>107</td>
<td>79</td>
<td>33</td>
</tr>
</tbody>
</table>

Remark: The participants are classified according to the field in which they are retrained. This information is only available from the training participation data and hence is missing if participation is identified from the benefit payment data.
Figure 3: Retraining (RT) for Men stratum 1 – Construction (top) vs. Non-construction (bottom)
Figure 4: Retraining (RT) for Men stratum 2 – Construction (top) vs. Non-construction (bottom)
Figure 5: Retraining (RT) for Men stratum 3 – Construction (top) vs. Non-construction (bottom)
Table 26: Cumulated and Average Employment Effects RT for Men – Construction vs. Non-construction

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Target Profession</th>
<th>Cumulated Effects</th>
<th>Average Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Q0–Q7</td>
<td>Q0–Q15</td>
</tr>
<tr>
<td>Employment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>construction</td>
<td>-3.51</td>
<td>-2.64</td>
</tr>
<tr>
<td>1</td>
<td>non-construction</td>
<td>-2.52</td>
<td>-2.02</td>
</tr>
<tr>
<td>2</td>
<td>construction</td>
<td>-2.49</td>
<td>-1.82</td>
</tr>
<tr>
<td>2</td>
<td>non-construction</td>
<td>-2.97</td>
<td>-3.31</td>
</tr>
<tr>
<td>3</td>
<td>construction</td>
<td>-2.08</td>
<td>-2.78</td>
</tr>
<tr>
<td>3</td>
<td>non-construction</td>
<td>-1.97</td>
<td>-1.87</td>
</tr>
<tr>
<td>Benefit Recipiency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>construction</td>
<td>4.29</td>
<td>4.53</td>
</tr>
<tr>
<td>1</td>
<td>non-construction</td>
<td>3.05</td>
<td>2.91</td>
</tr>
<tr>
<td>2</td>
<td>construction</td>
<td>3.45</td>
<td>3.98</td>
</tr>
<tr>
<td>2</td>
<td>non-construction</td>
<td>3.69</td>
<td>4.98</td>
</tr>
<tr>
<td>3</td>
<td>construction</td>
<td>2.51</td>
<td>3.68</td>
</tr>
<tr>
<td>3</td>
<td>non-construction</td>
<td>3.27</td>
<td>3.84</td>
</tr>
</tbody>
</table>

Remark: The cumulated (average) effects are the sum (average) of the quarter specific average treatment effect on the treated over the respective quarters. *, ** and *** denote significance at the 10%, 5% and 1% level, respectively, and QiQj denotes quarter i to quarter j since beginning of treatment.